
DDTIC
III

E LJ DTJCA-

I DSTRIBUTION STATEMr-M A
Approved for public release

Disuibution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 1 17 121

AFIT/GE/ENG/88D-43I

II'
DTIC

I

IMPLEMENTATION OF THE NETOS OPERATING
SYSTEM IN ADA WITH MODIFICATIONS TO

ALLOW VARIABLE LENGTH MESSAGES

* THESIS

Robert RodriguezI Captain USAF

AFIT/GE/ENG/88D-43

i
i Approved for public release; distribution unlimited

i
i
i
I

AFIT/GE/ENG/88D-43

IMPLEMENTATION OF THE NETOS OPERATING
SYSTEM IN ADA WITH MODIFICATIONS TO

ALLOW VARIABLE LENGTH MESSAGES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the ulkc

Requirements for the Degree of

Master of Science in Electrical Engineering
Acces'o For

NTIS Ct ,j

by IT C

Robert Rodriguez

Captain USAF

ro ,-I

December 1988

Approved for public release; distribution unlimited

Preface

The purpose of this thesis effort was to redesign the

Network Operating System (NETOS) software in the programming

U language Ada with modifications to support variable length

messages. This effort was prompted by a need to support

software engineering courses and computer network courses at

AFIT with a unique academic laboratory environment which

encourages modern software engineering principles.

Software development was patterned after the software

engineering development methodology presented in EENG 5.93,

Software Engineering, which consists of requirements

i3 analysis, design, implementation, and testing. Each phase

was completed; however, the data dictionaries for both the

SADT diagrams and the structure charts were not developed

i due to time limitation.

I wish to express my appreciation to those who have

supported and helped me in this thesis effort. I am

indebted to Charles Powers and Dr. Hartrum for their

3 assistance with the LSINET. I wish to thank my thesis

advisor, Capt B. George, for his continual support and

encouragement. I wish to thank my wife, Alicia, and our

children, Jason and Jenny, for their patience and support

throughout my tour at AFIT. And most importantly, I wish to

thank my Lord and Savior, Jesus Christ, who gave me the

strength to complete this work (Philippians 4:13).

Robert Rodriguez

ii

Il|

I

Table of Contents

5 Page

Preface ii

List of Figures v

List of Tables vi

Abstract vii

I. Introduction 1

Background 1

Problem 8

3 Scope 11

Assumptions 12

Standards 12

Materials and Equipment 16

I Approach 16

Presentation 17

II. Requirements Analysis 19

Introduction 19

Layer 7 20

Central System 21

Layer 1 24

Layer 2 26

Layer 3 30

Layer 4 32

Layer 5 36

Layer 6 39

iii

III. Design, Implementation, and Testing 43

3Introduction 43

NETOS Library 43

I Layer 1...................................... 45

3Layer 2...................................... 47

Layer 3...................................... 51

3Layer 4...................................... 54

Layer 5...................................... 57

ILayer 6...................................... 59

Central System 60

IV. Conclusions and Recommendations 63

3 Appendix A: Test Plan 67

Appendix B: User Guide 88

U Bibliography... 97

3 VITA... 98

1i

List of Figures

Figure Title Page

1. LSINET Topology 5

2. ISO 7-Layer Protocol Model 6

3. Central System Protocol Model 7

4. Layers, Protocols, Interface 13

5. PTABLE.DAT 52

v

MENNE

List of Tablesi
Table Title Page

i I. NETOS Development 4

3 II. Error Codes 9

III. SRC/DST Codes 52

3 IV. Layer 6 Callable Modules 93

V. MSG TYPE Parameters 94

VI. SRCE/DEST Parameters 94

3 VII. DESTDEVICE Parameters 95

VIII. STATUSCHARACTER Parameters 95

3 IX. STATUS Codes 96

I
I
U
I
I
i
I
n

i v

|

AFIT/GE/ENG/88D-43

Abstract

This thesis redeveloped the Network Operating System

(NETOS) software, which is patterned after the OSI 7-Layer

Model and runs on a Local Area Network at the Air Force

Institute of Technology, from the programming language C to

the programming language Ada, with modifications to support

variable length messages.

The approach taken used a software development

methodology which contains the following phases;

requirements analysis, design, implementation, and testing.

The requirement analysis phase consisted of an enumerated

listing of the requirement specifications supported by SADT

diagrams. The design phase transformed these diagrams to a

structural chart representation of the design.

Implementation of the software was written in Janus/Ada for

the work stations and Whitesmith C for the central system.

Testing was an integral part of the implementation phase and

was accomplished at each level of the 7-Layer model.

vii

IMPLEMENTATION OF THE NETWORK OPERATING SYSTEM IN ADA
WITH MODIFICATIONS TO ALLOW VARIABLE LENGTH MESSAGES

I. Introduction

Background

LSINET is a local area network (LAN) located at the

School of Engineering, Air Force Institute of Technology

(AFIT), Wright-Patterson Air Force Base, Ohio. This network

provides a unique academic laboratory environment in support

of software engineering courses, computer network courses,

and various research projects. The LSINET originally

consisted of LSI-11/02 microcomputers, thus the name LSINET.

Later the LSI-11/02s were upgraded to LSI-11/23s. And

within the last year, the work stations have been replaced

with Zenith Z-248 microcomputers. The central system and

one station, however, still remain as LSI-1/23

microcomputers. The development effort of the LSINET was

accomplished through the NETOS (Network Operating System)

project.

"The NETOS (Network Operating System)
project was conceived to support a required
graduate level sequence in computer systems
which includes courses in software engineering,
operating systems, and architecture followed by
a keystone laboratory that would allow students
to apply software engineering techniques and
methodologies to a large scale development. It

!1

was planned from the beginning with a dual
purpose in mind. The first purpose was
pedagogical: to define a project that would be
large and complex enough to allow the realistic
application of software engineering principles
and yet be achievable in a single 10-week
quarter. The second purpose was to provide
improved support for the software systems
laboratory course to make software development
more convenient for the students. This
laboratory course was conducted using about a
half dozen LSI-11/02 microcomputers, each with
dual 8-inch single-density disks and only a few
with printers. This latter goal included
improved printing support by network access to
the printers from any microcomputer,
centralized file storage to support multi-team
programming efforts, and upload/download access
between the lab's microcomputers and the3 school's VAX-11/780.

The original concept was simply to network
the LSI-11/02s together in the simplest manner
possible. This limited LAN was to become known
as LSINET. The project was then to be the
development of a network operating system which
would provide a limited number of network
services, including printer spooler, and file
storage and retrieval. All software was
developed in C except w,.ere assembly language
was necessary. The initial design involved a
layered, top-down approach involving **four**
ad hoc layers. During the first laboratory
effort, it became clear that the lower levels
needed redesigned and better organized. The
decision was then made to implement a version
of the ISO seven layer protocol. This had not
only the objective of supporting the computer
systems sequence and laboratory, but also of
providing a working ISO model to support our
two-quarter graduate sequence in computer
networks. Although the LSINET was certainly a
small, limited LAN, and despite the fact that
most documented operational networks tend to
lump the upper three or four layers together,
the decision was made to design and implement
explicitely all seven layers"(Hartrum, 1988).

2

I

NETOS has since gone through several modifications and

enhancements. Table I lists the chronological development

of NETOS. The original concept was based on an ad hoc

design of four layers. Several problems were encountered

with this initial design. This led to a more structured and

thought out design which was based on the International

Standards Organization (ISO) Open Systems Interconnection

(OSI) 7-layer model. All seven layers including a Data Base

Management System (DBMS) as layer seven were implemented

during the Spring Quarter 1984. During the Summer Quarter

1984, a gateway node was added to the network to allow

interconnection to the Universal Network Interface Device

(UNID). During the Fall Quarter 1984, an interrupt version

of Layer 2 was designed to allow queueing of packets. This

allowed network servers to receive new packets while

continuing to service an already received packet. Also, the

gateway software was modified to directly interface to a

VAX-11/780 running VMS without the use of the UNID. The

Spring Quarter 1985 was used to validate and test layers

1-3. And finally in the Winter Quarter 1988, the LSI-11/23

work stations were replaced with Z-248 microcomputers

(Hartrum, 1988).

3

I
I

Table I.
NETOS Development Chronology

(Hartrum, 1988)

I - First non-ISO NETOS incl Spooler & MSS

Winter '84 - NETOS ISO SADT developed: Dated March 1984,UB revised 4/12/84

Spring '84 - Initial ISO Layers 2-7 incl DBMS
DD stored on VAX using editor

Summer '84 - Initial Gateway to UNID

I Fall '84 - Layer 2 interrupt; extended DBMS; VMS interface
DD on VAX w/Ingres

Spring '85 - Layer 1; cleanup ISO 2 & 3; add UNIX, CP/M,
MS-DOS

3 Winter '88 - Converted from LSI-1 to Z-248 Work Stations

The topology of the LSINET is shown in Figure 1.

Upper-case letters are used to identify each microcomputer.

This thesis effort is restricted to a portion of the network

consisting of nine Zenith Z-248 microcomputers (Systems A

and C-J) and one LSI-11/23 microcomputer (System B).

A crucial node in the network is the central system

(System B). The central system is the center node of the

star and is responsible for routing packets between

satellite computers. Polling is used by the central system

to detect if any other system desires to communicate with

it.

All software was developed in the C programming

4

language and based on the ISO OSI seven layer model. The ISO

OSI seven layer model is shown in Figure 2. The exception

is the central system which provides network management

functions residing just above Layer 2 of the ISO model.

Figure 3 shows the relationship of the central system's

protocols layers in contrast to the rest of the network.

D E F G
Z-248 Z-248 Z-248 Z-248

Z-248Z-248

A I
Z-249 Z-248Z-4

Figure 1. LSINET TOPOLOGY

5

LEVEL 7
Application Layer

LEVEL 6
Presentation Layer

LEVEL 5
Session Layer

LEVEL 4
Transport Layer

LEVEL 3
Network Layer

LEVEL 2
Data Link Layer

LEVEL 1
Physical Layer

Figure 2. ISO 7-layer Protocol Model

6

LEVEL 7 LEVEL 7
Application Application

Layer Layer

LEVEL 6 LEVEL 6
Presentation Presentation

Layer Layer

LEVEL 5 LEVEL 5
Session Session
Layer Layer

LEVEL 4 NETOS LEVEL 4
Transport Central Transport

Layer System Layer

LEVEL 3 MAIN LEVEL 3
Network Network Network
Layer Management Layer

LEVEL 2 LEVEL 2 LEVEL 2
Data Link Data Link Data Link

Layer Layer Layer

LEVEL 1 LEVEL 1 LEVEL 1
Physical Physical Physical
Layer Layer Layer

Figure 3. Central System Protocol Model
(Hartrum, 1988)

7

I

Problem

The major problem appears to center around the lack of

cohesion and communication in the development of the LSINET.

i The evolving development spanned several academic quarters.

3 The projects for each quarter were subdivided into separate

student groups. Furthermore, the network not only supported

* software engineering development but also various other

activities such as; computer network courses, student

I thesis, student independent special study, and faculty

research. Due to this lack of cohesion and communication,

the LSINET contains numerous discrepancies and shortcomings

3 which hampers its ability to provide a useful and productive

system for an academic and research environment.

3 After some hands-on-experience with the operation of

the LSINET and examination of the source code, several

discrepancies were encountered. Unfortunately, only the

i lower three layers of the network were in operation on the

Z-248s. Therefore, all problem areas discovered were

limited to these three layers. Two discrepancies

encountered are described as follows.

In the Test ISO Layer 2, send2 module, the error codes

3 which determine the appropriate error message to be

displayed do not coincide with the error codes returned from

5 the ISO Layer 2, sendypacket module. Table II lists the

error codes found in both modules.

l8

I

I Table II.
Send2 and send_packet error codes

Error send2 error code send_packet
error code

No error 0 0
Timeout waiting for TA 2 202
Timeout waiting for ACK/NAK 3 204
Received a NAK 6 205

Unrecognized error all others -5 Timeout sending TR 201

Non-TA received 203
Non-ACK/NAK received 206

I Also, it was observed that the error message displayed

on the central system's monitor are not always cleared.

This makes detection of errors confusing, since the operator

* is unable to determine if the error belonged to the current

message or the previous message.

5 A second problem resides in the language in which the

present NETOS software is written. The current software is

* written in the language C. However,

I"As early as 1975, a few far-sighted
individuals in the United States Department of
Defense recognized the impending software
challenge and realized that an effective
software development system should be founded
no a standard programming language with

features that would encourage modern
programming practices. They defined the
requirements, recognized that no existing
language would support such requirements, and
hence commissioned the worldwide language
design competition that produced Ada" (Booch,
1986).

l
9

I

I

I Since Ada has been chosen to be the standard high level

language as mandated by the DOD, AFIT has begin instructing

all software design efforts utilizing Ada wherever possible.

I So, in order to allow students academic experience in coding

in Ada; the NETOS software, which supports courses in

software engineering and computer networks, must be coded in

3 the programming language Ada.

Another problem is that the present system supposably

I allows for variable packets sizes to be transmitted.

However, to do so requires that the source, destination, andI
central system all be set to the same packet size. In other

3 words, each node that processes the packet must be

configured to the same packet size. The major problem here

* is that to change the packet size of the central system

requires the operator to manually interrupt the central

node. And, the configuration of the central system dictates

the configuration of the rest of the network since all

traffic passes through the central node. Thus, the system

at present does not allow for true variable length packets.

The system should be modified to include as Dr. Hartrum

states, "The addition of the ability for Layer Two to handle

true variable length packets, where the packet size is

carried along in the frame, would not only allow dynamic

testing of various packet sizes, but would also allow for

application programs to use a packet size best suited to the

application" (Hartrum, 1988).

10

3 Scope

The scope of this thesis effort was to correct

discrepancies, make enhancements, and implement the existing

LSINET in Ada. Due to the size and complexity of the

LSINET, this effort was restricted to the Central System and

the Work Stations: A, C, D, E, F, G, H, I, and J. In order

to stick with the original concept and provide a simple

network, one that is easily understood and has a sound

design which can be easily upgraded, this effort limited

itself to the non-interrupt receive message version.

Furthermore, since the interrupt version is primarily used

by the network servers and since the network servers have

yet to be implemented in Ada, the interrupt version is not

useful at this time. However, the non-interrupt version is

required. Unfortunately, since the Central System was not

replaced with a Z-248 but still remains a LSI-1, the

software written for the Central System remained in C as the

RT-11 operating system do not support Ada.

This thesis effort was limited to the ISO Layers 1-6.

Layer 7 software was not implemented. All application

programs (Layer 7) must be supplied by the user.

This thesis effort did not attempt to make any changes

to hardware, including reconfiguring the LSINET, other than

utilizing Comm Port #2 of the Work Stations rather than Comm

Port #1. This freed up Comm Port #1 to be used for other

purposes such as a modem or mouse.

11

Assumptions

It is assumed that simplicity and understandability are

of prime importance in the development of the software,

since the network's purpose is to provide an academic

laboratory environment. Productivity issues such as

throughput and turnaround time are assumed to be of lesser

importance.

Although the old network was extremely reliable, it is

assumed that the transmission across the network is

unreliable. This assumption is made to allow portability of

the software to a less reliable environment.

Standards

The LSINET was developed based on the ISO OSI 7-layer

network model. This model is a highly structured hierarchy

of protocols organized as a series of layers. Each layer

provides service to the next higher layer above it while

shielding the higher layer from the implementation details

of the lower layers. All layers, except the lowest layer,

carry on a virtual conversation with its corresponding layer

on another machine. However, the actual communication is to

the layer below it. Only at the lowest layer is there a

physical communication to another machine. The layers, the

protocols associated with each layer, and the interface

between layers are shown in Figure 4. Each layer will be

described, starting with the top layer (Zimmerman, 1980).

12

Hos A Lae 7 prtoo Hot

I
I
I
I
I
I

M OSt A Host 3

Laver7 1 - Layer 7 protoco!

Layer 6/7 interface L 6

Layeer 6 ter-c Layer 6 protoco l

Layer 56 interface I $

Laver 4 protoco lL ii - - ae 4 --- -t -- --
I Layer 3/4 interface t $

Layer 3 tprotocoi

i Laver 2/3 interface I

Layer 2 protocol

Layer 1/2 interface I~~~Layer 1I Laver I pro toc° .L a e1

Figure 4. Layers, protocols, and interfaces.3 (Tanenbaum, 1981: Fig 1-5)

* 13

I

I

Layer 7 - The Application Layer.

The application layer consists of the various user

application programs. The details of the protocol, which

I establishes the rules and guidelines for communication

between two application programs, are left up to the users.

Layer 6 - The Presentation Layer.

I The presentation layer provides transformation

services. Typical transformation services provided by layer

six are: data compression, encryption, conversion between

character codes (e.g. ASCII to EBCDIC), and various format

conversion to compensate for incompatible terminals.I
Layer 5 - The Session Layer.

I Since the presentation layer merely provides

transformation services, the session layer is the first

layer that interfaces the user to the network. This layer

3 is responsible for establishing a connection between two

users. This connection is called a session. Once a session

has been established, layer five must then maintain the

session. Finally, layer five must be able to terminate a

i session.

I Layer 4 - The Transport Layer.

The transport layer is responsible for providing an

end-to-end transport service between processes. "It maps

3 multiple processes at the Session layer level into a single

14

I

network communication link by establishing and deleting

3 connections on behalf of Layer 5 and keeping track of which

connection is associated with which host process" (Hartrum,

1 1988). Layer four also establishes messages as its units of

* information.

Layer 3 - The Network Layer.

I The network layer is primarily concerned with the

routing of packets through the network. Packets, which are

formed from the messages obtained from layer four, are the

units of information communicated in layer three. Based on

the destination, this layer sends the packets out over the

I best available route.

* Layer 2 - The Data Link Layer.

The data link layer is responsible for providing error

free transmission of data frames over a link. Frames, which

3 are formed from the packets obtained from layer three, are

the units of information communicated in layer two. The

3 frames typically include an error detection code. This is

used at the receiving end to determine if the transmission

was error free. Based on this information, the receiver can

then notify the sender whether the transmission was

successful or not. If not successful, the sender can then

retry transmitting the frame again.

3 Layer 1 - The Physical Layer.

15

I
The physical layer is the only layer that actually

Ssends data from one machine to another. Its purpose is to

transmit and receive raw bits over a communication medium.

I Primary concerns involve the mechanical, electrical, and

procedural characteristics of the communication medium

(Tanenbaum, 1981).

I Materials and Equipment

The materials and equipment which were required for

this thesis effort were all available on the LSINET. The

computer systems involved consisted of the Central System

(LSI-11/23) and the Work Stations; A, C, D, E, F, G, H, I,

I and J (all Z-248s). A validated JANUS Ada compiler had

3 recently been obtained by AFIT and was used to implement Ada

on the Work Stations.

1 Approach

* The approach taken in this thesis effort was patterned

after the software development methodology presented in EENG

5.93, Software Engineering, and EENG 6.90, Software Systems

Laboratory. The approach included requirements analysis,

I design, implementation, and testing.

* The requirements analysis primarily consisted of an

enumerated list of requirements specifications supported by

3 SADT diagrams. This phase relied heavily on earlier work as

the basic requirements did not change very much. The goal

i was to determine all requirements necessary to provide an

3 16

I

I
I

enhanced LSINET capable of supporting academic and research

I work at the Air Force Institute of Technology.

The design phase followed a top-down design approach.

An object oriented design approach was considered, but much

of the software engineering principles, such as information

hiding, abstraction, and modularity, inherent in an object

oriented design are also inherent in the ISO 7-Layer Model.

Also the hierarchy structure of the ISO 7-Layer Model lends

itself well towards a top-down design approach. The design

phase was based on structure charts derived from the SADT

diagrams produced in the requirements analysis. Transform

and Transaction analysis was to derive the structure charts.

3 Implementation consisted of coded modules. Coding followed

a bottom-up approach, beginning with Layer 1 and working up

3 to Layer 6. This approach was chosen to allow the layers to

be built upon already existing and tested layers. This

I reduced the amount of stub and dummy modules required during

testing. Testing was an integrate part of the

implementation phase. Test modules were specifically

3 designed for each module. And, each layer was thoroughly

tested before work on the next layer was begun.

Presentation Sequence

3 The second chapter consists of the requirements

analysis of the network. Requirements are subdivided into

their appropriate layer of the seven layer model. SADT

3 17

I

I
I

diagrams also are provided.

The third chapter describes the design, coding, and

testing effort. Included in this chapter are all design

considerations supported by structure diagrams. The coding

effort is described for each layer. The test approach is

explained and is supported by a test plan and the results of

the testing.

The last chapter summarizes this thesis effort. This

includes conclusions and recommended future follow-on

* efforts.

I
I
U
I
I
I
I
I
I
* 18

I

'I
I
3 II. Requirements Analysis

I Introduction

The requirements analysis was based primarily upon the

current NETOS system. Unfortunately, there does not exist a

3 document containing an enumerated listing of requirements

specifications for the current system. Therefore, the

I requirements analysis for the new system were derived from

the observation of the current system, from a document

containing a narrative form of the functional specifications

3 of the current system (HARTRUM:88), and from new

requirements developed in this thesis effort. The major

I portion of these new requirements are related to requiring

the new NETOS system to handle variable length frames,

packets, and messages.

This chapter will be presented in the following manner.

First, the user's applications program (Layer 7) functional

3 specifications will be described in a narrative format.

Although Layer 7 is not part of this thesis effort, this

information is provided in order to establish a standard

3 basis for the interface between Layer 7 and Layer 6. Next,

the central system's functional specification will be

3 described in a narrative format followed by an enumerated

listing of the central system's requirements specifications.

I And finally, the ISO Layers 1-6 will described in the like

3 19

I

I
manner as the central system. SADT diagrams of the central

system and Layers 1-6 are kept on file by the LSINET

manager, presently Dr. Hartrum.

* Layer 7

Although Layer 7 is not part of this thesis effort,

this information is provided to give some understanding of

the interface required by Layers 7 and 6. Layer 7 consists

n of any application programs that makes subroutine calls to

Layer 6 in order to access the network. These application

programs can provide such network services as a Printer

Spooler, a Mass Storage System, or a Data Base Management

System. Each network service consists of two corresponding

programs, the server program and the user access program.

Before a network service can be provided, both the

server program and the user access program must initialize

Layer 6. Then, the initiating program must send a request

for service message to the corresponding server program.

This is required in order to determine if the server program

is online, ready, and capable of handling the request.

i Therefore, this request message must contain all necessary

3 information to allow the service program to reach a decision

as to accept the request or reject it.

3 The server program must be capable of sending a status

message back to initiator. The status message indicates

i whether the request is accepted or rejected; and if

20U'

I

rejected, the reason why. If accepted, the status message

may contain further information for the initiator.

I Once the appropriate handshaking of requesting a

service and receiving an accept status message is complete,

* the initiator and network server both must be capable of

transmitting and receiving messages back and forth as

I required.

And finally, the initiator must be capable of sending a

termination message when the session is complete.

Typically the initiator will be a user access program.

However, there are special cases where the initiator will be

I a network server which is requesting service of another

network server. For example, to print a list of files from

the Mass Storage System, this server must request service of

the Printer Spooler System (HARTRUM, 1988).

Central System

Narrative Functional Specifications.

I The central system is the center node of a star

topology network. Along with some limited network

I management functions, its primary function is to forward

I packets from the source to the destination and as such

requires the use of a main routine and only Layers 1 and 2

of the ISO model.

Although the management functions are limited, they do

I provide the operator with some degree of management of the

I 21

I'

NETOS system. The operator has the ability to select which

ports are to be active. He/she has the ability to establish

a work station as a monitor station. All traffic through

the central system will be forwarded to each monitor

station, which will allow the operator to examine the

traffic. The central system will display to the operator

the port being polled, the port in which a packet is being

received, and the port through which the packet is being

forwarded to its destination. And finally, the central

system will display to the operator all errors encountered

during transmission and reception.

The main routine software should initialize the central

system. This should include building a port table from data

loaded from a storage device, calling Layer 1 to initialize

the ports, prompting the operator for port status (active or

not active), prompting the operator in order to establish a

work station which will monitor all network traffic,

prompting the operator to exit to the operating system, and

prompting the operator to activate the network.

Once the network is in operation, it should poll the

ports for a transmit request. Once a TR has been received,

it should respond with a TA. The receiving and transmitting

of packets should follow the same procedures as described in

the ISO Layers 1 and 2. However, instead of extracting the

packet from the frame and passing it to Layer 3, the central

22

I
I

system software should forward the frame to its destination

and any work stations defined to be network monitors.

Since there is no Layer 3, the central system software

I should interface with the user by sending information to the

display. Information displayed should include all error

messages and several status items such as source host of the

packet being received, destination host to where the packet

is being forwarded, and port being polled.I
Enumerated Requirements Specifications.

SPEC_REQ_NUM_C.1 - Must be able to allow the user to exit
to the operating system.

SPEC_REQNUMC.2 - Must be able to allow the user to
initialize the central system.

SPECREQNUM_C.2.1 - Must be able to load from a storage
device any information required by the
Central System initialization which is
subject to change. This is to
facilitate changes, by requiring
changes only to the information in the

storage device and not to the program's
* source code.

SPEC_REQ_NUMC.2.2 - Must be able to prompt the user for
port status. This allows the user to
activate or deactivate a particular
port.

SPECREQ_NUN_C.2.3 - Must be able to prompt the user for
monitor status. This allows the user to
establish or disestablish a particular
work station to serve as a monitor of
all traffic on the network. (All
traffic should be forwarded not only to
its destination but also to any work
station established as a monitor
station by the user.)

I

I

I

SPECREQ_NUN_C.3 - Must be able to poll all ports, seeing
if there are any transmit requests.

SPECREQNUM_C.4 - Must be able to receive a variable
length packet. See SPECREQ_NUM_2.3

SPECREQ_NUMC.5 - If a valid packet was received, must be
able to transmit the received packet to
its destination and all active monitor
stations. See SPECREQ_NUM_2.2

SPECREQ_NUM_C.6 - Must be able to display the status
codes of the receptions and
transmissions.

SPEC_REQNUM_C.7 - Must be able to display the port being
polled, the port that is receiving the
packet, and the port that is sending
the packet.

SPEC REQ_NUM_C.8 - Must return to the polling state upon
any errors, after timeouts have
expired, or upon a successful
forwarding of a packet.

Layer 1

Narrative Functional Specifications.

Layer 1 provides the capability of initializing the RS-

232 serial ports to a desired configuration. It also allows

testing of the port to determine if a byte of data has

arrived or if the port is ready to accept data for output.

If the port is ready, Layer 1 provides the capability to

transmit and receive a byte of data through a RS-232 serial

port.

24

I
Enumerated Requirements Specifications.

3 SPEC_REQ_NUM_1.1 - Must be capable of initializing a RS-
232 serial port.

SPECREQ_NUM_1.1.1 - Although the only ports currently
available on the remote systems (Z-
248s) capable of supporting the NETOS
system are ports 1, 2 and 3; Layer 1
should have the capability of
supporting port numbers greater than
this.

SPECREQ_NUM_1.1.2 - Should allow baud rates of 1200, 2400,
4800, and 9600 bits per second.

I SPEC_REQ_NUM_1.1.3 - The initialization parameters should be
set for; no parity, one (1) stop bit,
and eight (8) character bits.

SPEC_REQ_NUM_1.1.4 - Should return an error code if the baud
input is not a valid selection.

SPECREQ_NUM_1.1.5 - Should return an error code if
initializing the port failed.

U SPECREQ_NUM_1.1.6 - Should return a status code indicating
that the port was initialized

* successfully.

SPEC_REQ_NUM_1.2 - Must be capable of determining if a RS-
232 serial port has data available to5 be read.

SPECREQNUM_1.2.1 - Should return a status code indicating
if the port has data available to be
read or not.

SPECREQ_NUM_1.3 - Must be capable of determining if a RS-
232 serial port is available to write
data to.

SPECREQ_NUM_1.3.1 - Should return a status code indicating
if it is clear to write data to the
port or not.

SPEC_REQ_NUM_1.4 - Must be capable of reading data from a
RS-232 serial port.

I
1 25

I

I
SPECREQ_NUM_1.4.1 - Should be capable of reading a full

byte of data, eight (8) bits, and not
just the standard ASCII characters
which utilize only seven (7) bits.

SPEC_REQNUM_1.5 - Must be capable of writing data to a
RS-232 serial port.

SPEC_REQNUM_1.5.1 - Should be capable of writing a full
byte of data, eight (8) bits, and not
just the standard ASCII characters
which utilize only seven (7) bits.

3 Layer 2

Narrative Functional Specifications.

3 Layer 2 provides the services of transmitting and

receiving frames of variable length.

In order to transmit a frame, a frame is built from a

3 packet of psize obtained from Layer 3. A checksum is

calculated and included in the frame to provide an error

3 detection capability. Also included in the frame is the

frame length which is required due to the variable length of

I the frames. Next, the proper NETOS handshaking requirement

3 must be observed. A transmit request (TR) must be sent to

the central system which then responds by sending back a

3 transmit acknowledge (TA). Layer 2 should allow several

attempts in establishing the NETOS handshake requirement.

i Once that is established, the frame can be transmitted. The

central system should respond with an acknowledgment (ACK)

or nonacknowledgment (NAK), dependent on errors in the

3 transmission. Layer 2 should allow several attempts to

26

I

transmit a frame. Based upon the response, Layer 2 will

either relinquish control back to Layer 3, timeout, or try

transmitting the frame again.

I In order to receive a frame, the NETOS handshaking

* requirement again must be observed by waiting for a transmit

request from the central system and responding with a

transmit acknowledgment. Then, a frame can be received.

Once the frame is received, the checksum needs to be

I validated. Depending on the results, an acknowledgment or

nonacknowledgment will be sent back to the central system.

Finally, if acknowledged, the packet will be extracted from

3 the frame and sent to Layer 3.

3 Enumerated Requirements Specifications.

SPEC_REQ NUM2.1 - Layer 2 must be able to initialize
all requirements necessary to operate
at this level.

SPECREQNUM_2.1.1 - Must be able to load from a storage
device any information required by
Layer 2 initialization which is
subject to change. This is to
facilitate changes, by requiring
changes only to the information in
the storage device and not to the
program's source code.

SPECREQNUM_2.2 - Must be capable of transmitting a
variable length frame.

I SPEC REQNUM_2.2.1 - Must be capable of calculating a
checksum from a variable length3 packet.

SPECREQNUM_2.2.2 - Must be capable of building a
variable length frame from a variable3 length packet.

1 27
I

I

SPECREQ_NUM_2.2.2.1 - The frame should contain at least; a
SOH, the frame length, the packet,
the checksum, and a ETX.

SPEC_REQNUM_2.2.3 - When sending a frame, must be able to
handle the NETOS handshaking
requirement of sending a transmit
request (TR) and waiting to receive a
transmit acknowledge (TA).

SPECREQNUM_2.2.3.1 - Should allow several attempts in
trying to establish the NETOS
handshake.

SPEC_REQNUM_2.2.3.2 - Should return an error code if after
a reasonable amount of time Layer 2
is unable to transmit a TR.

SPEC_REQ_NUM_2.2.3.3 - Should return an error code if after
a reasonable amount of time Layer 2
has not received a TA.

SPECREQNUM_2.2.3.4 - Should return an error code if
anything other than a TA is received
when expecting a TA.

SPEC_REQ_NUM_2.2.3.5 - Should return a status code
indicating that the NETOS handshake

* was accomplished successfully.

SPEC_REQNUM_2.2.4 - Should allow several attempts in
trying to send a frame.

SPEC_REQ_NUN_2.2.5 - Must be able to receive an ACK/NAK
reply.

SPECREQ_NUM_2.2.5.1 - Should return an error code if after
a reasonable amount of time an
ACK/NAK has not been received.

SPECREQNUM_2.2.5.2 - Should return an error code if
anything other than an ACK or NAK is
received.

SPECREQ_NUM_2.2.5.3 - Should return an error code if a NAK
is received.

SPECREQ_NUM_2.2.5.4 - Should return a status code
indicating that an ACK was received.

28

i

SPECREQNUM_2.3 - Must be capable of receiving a
variable length frame.

SPECREQ_NUM_2.3.1 - When receiving a frame, must be able
to handle the NETOS handshaking
requirement of waiting for a transmit
request (TR) and then sending a
transmit acknowledge (TA).

SPECREQ_NUM_2.3.1.1 - Should return an error code if after
a reasonable amount of time Layer 2
has not received a TR.

i SPECREQ_NUM_2.3.1.2 - Should return an error code if Layer
2 has received something other than a

i TR.

SPECREQ_NUM_2.3.1.3 - Should return an error code if after
a reasonable amount time Layer 2 is
unable to transmit a TA.

SPECREQ_NUM_2.3.1.4 - Should return a status code
indicating that the NETOS handshake
was accomplished successfully.

SPECREQ_NUM_2.3.2 - Should return an error code if the
first item of the frame is not a SOH.

SPECREQ_NUM_2.3.3 - Should return an error code if after
a reasonable amount of time the
entire frame has not yet been
received.

I SPEC_REQ_NUM_2.3.4 - Should be able to calculate and
compare the packet checksum with the
checksum sent in the packet.

SPEC_REQ_NUM_2.3.5 - Must be able to transmit an ACK/NAK
reply based on the results of the
checksum comparison.

SPECREQ_NUM_2.3.6 - Must be able to extract the packeti from the frame received.

29

Ia !l

Layer 3

Narrative Functional Specifications.

Layer 3 is responsible for transmitting and receiving

packets of variable length.

In order to transmit a packet, the packet first must be

built from a message of msize received from Layer 4. Next,

the destination host (Dst) code must be mapped to the proper

I/O port in which to route the packet. Then, the packet can

be sent to the destination process.

In order to receive a packet, the Src code is mapped to

the proper I/O port in which the packet will be routed.

Next, the packet is received from Layer 2. Then, the Src

and Dst codes are evaluated to determine if the packet

should be accepted or rejected. Last, if the packet is

accepted the message is extracted from the packet and sent

to Layer 4.

Layer 3 should also allow for the transmission and

reception of system messages to be handled at the Layer 3

level.

Enumerated Requirements Specifications.

SPECREQ_NUM_3.1 - Layer 3 must be able to initialize
all requirements necessary to operate
at this level.

30

I
SPECREQ_NUM_3.1.1 - Must be able to load from a storage

device any information required by
Layer 3 subject to change. This is
to facilitate changes, by requiring
changes only to the information in
the storage device and not to the
program's source code.

SPECREQ_NUM_3.2 - Must be able to transmit a variable
length packet.

SPECREQ_NUM_3.2.1 - Must be able to send a variable
length Layer 3 System Packet. This
packet will contain information for
use at the Layer 3 level only.

I SPEC_REQ_NUM_3.2.2 - Must be able to build a variable
length packet from a variable length

* message.

SPEC_REQ_NUM_3.2.2.1 - All packets should contain a time
stamp.

SPEC_REQ_NUM_3.2.3 - The proper port must be determined in
which to route the packet.

3 S-EC_REQ_NUM_3.3 - Must be able to receive a variable
length packet.

SPECREQ_NUN_3.3.1 - Must be able to receive a variable
length Layer 3 System Packet.

SPECREQNUM_3.3.2. - Must be able to receive a particularpacket (from a particular source
host/process).

3 SPECREQ_NUM_3.3.2.1 - The proper port must be determined in
which to receive the packet.

SPECREQ_NUM_3.3.3 - Must also be able to receive a packet
from any source host/process.

SPECREQNUM3.3.3.1 - All ports should be polled until a
packet is received.

SPECREQ_NUM_3.3.4 - Must be able to extract the message
from the packet.

31

I

SPECREQ_NUM_3.3.5 - Must be able to accommodate Layer
3 System Packets. (These are packets
which are processed at Layer 3 and
not passed up to the next Layer.
Presently there are no requirements
for Layer 3 System Packets, but
future changes might include them to
allow altering the routing table.)I

Layer 4

Narrative Functional Specifications.

* Layer 4 provides for the establishing of a logical

connection between two host processes, maintaining the

3 connection, and upon completion terminating the connection.

In order to establish a logical connection, Layer 4

must be able to to establish a channel number. This

3 includes determining if a channel number is available, and

if so, assigning that channel number to a source-destination

transport address combination. The transport address

consist of a physical host designator and a process number.

After a channel has been assigned, a channel request message

* is built and sent to the destination Layer 4. The

destination checks to see if the channel request message is

a valid request for a channel. If valid, the destination

establishes its own channel number. Depending on the

I results, the destination Layer 4 builds either a invalid

3 response message or a valid response message. The reply is

then sent back. After receiving the reply message, it is

3 evaluated to determine if the connection was successful or

1 32

I

I

not. If successful, the channel number is returned to Layer

5. If not successful, the channel number is freed and a

error message is returned.

Once a connection has been established, Layer 4 is able

3 to send and receive messages. To send a message, the

channel number is used to look up the corresponding :Durce

and destination transport addresses. If the data length to

be transmitted is smaller than the variable message size

specified by the application program, then the variable

message size should be adjusted to the data size. If, on

the other hand, the data length to be transmitted is larger

than the variable message size, then the data should be

broken up into lengths of message size and each portion

transmitted in turn. When the end of data has been reached

a special message should be transmitted signaling the end of

data.

To receive a message, the channel number is used to

determine the corresponding source-destination transport

address. The original data that was sent is received by

building the data from the collection of received subparts

until the special message signaling the end of data is

received.

33

Enumerated Requirements Specifications.

SPEC_REQ_NUM_4.1 - Layer 4 must be able to initialize
all requirements necessary to operate
at this level.

SPECREQ_NUM_4.1.1 - Must be able to load from a storage
device any information required by
Layer 4 subject to change. This is
to facilitate changes, by requiring
changes only to the information in
the storage device and not to the
program's source code.

SPECREQ_NUM_4.2 - When sending a transmission, first
must be able to establish a
connection.

SPECREQ_NUM_4.2.1 - Must assign an available channel for
each connection.

SPECREQ_NUM_4.2.1.1 - Should allow for several different
channels operating concurrently.

SPECREQ_NUM_4.2.1.2 - If attempting to establish a channel
and all channels are already in use,
should return an error code.

SPECREQ_NUM_4.2.1.3 - If attempting to establish a channel
and successful, should return a
status code indicating so.

SPECREQ_NUM_4.2.2 - Must be able to send a connect
request message to the destination
signaling it to also establish a

connection.

SPECREQ_NUM_4.2.3 - Must be able to receive the
destination's reply to the connect
request message.

SPECREQ_NUM_4.2.4 - Must be able to decode the reply
message.

SPECREQ_NUM_4.2.4.1 - If an invalid reply, should return an
error code.

SPECREQ_NUM_4.2.4.2 - If a valid reply, should return a
status code indicating so.

34

I

SPEC_REQNUM_4.3 - When receiving a transmission, first
must be able to establish a

* connection.

SPEC_REQ_NUM_4.3.1 - Must be able to receive a connect
request message from the source which
is attempting to establish the
connection.

3 SPEC_REQ_NUM_4.3.2 - Must be able to decode the connect
request message.

SPEC_REQNUM_4.3.2.1 - If an invalid connect request
message, should return an error code
and send back an invalid connect3 request reply message.

SPECREQ_NUM_4.3.2.2 - If a valid connect request message
and a channel can be assigned, should
send back a valid connect request
reply message.

SPECREQ NUM_4.3.3 - Must assign an available channel for
each connection.

SPEC_REQ_NUM_4.3.3.1 - Should allow for several different
channels operating concurrently.

SPECREQ_NUM_4.3.3.2 - If attempting to establish a channel
and all channels are already in use,
should return an error code.

SPEC_REQ_NUM_4.3.3.3 - If attempting to establish a channel
and successful, should return a
status code indicating so.

3 SPEC_REQ_NUM_4.4 - Must be able to close a connection.

SPECREQ_NUN_4.4.1 - Should return an error code if an
error is encountered in closing the
connection.

SPEC_REQ_NUM_4.5 - Must be able to transmit variable
length messages over a previously
established connection.

SSPECREQ_NUM_4.5.1 - Should transmit the message MSIZE
bytes at a time.

I
* 35

I

I SPECREQ_NUM_4.5.2 - If the message is less than MSIZE
bytes, transmit only the required
number of bytes in order to send the
message.

SPEC_REQ_NUM_4.5.3 - Should some how indicate to the
receiving end that the entire message
has been transmitted.

SPEC_REQ_NUM_4.6 - Must be able to receive variable
length messages over a previously
established connection.

SPECREQ_NUM_4.6.1 - Should be able to determine if the
message received is assigned to the
particular channel.

SPECREQ_NUM_4.6.2 - Should be able to determine if the
EOM has been reached.

SPEC_REQ_NUM4.6.2.1 - If the EOM has not been reached,
continue to build the submessages
into the original message.

Layer 5

Narrative Functional Specifications.

Layer 5 is responsible for opening, maintaining, and

3 closing a session between two processes. Layer 5 also maps

the logical resource names to the transport address. A

3 determination is made to see if the source and destination

logical resource names are valid; and if valid, convert them

to a transport address consisting of a physical host

designator and a process number.

A logical connection must be established between the

source and destination process before transmission can

begin. Once a connection has been established, all

subsequent transmission over the logical connection must

36

I
I

specify the connection number.

Message transmission and reception is accomplished by

3n isending and receiving messages over a previously established

connection.

File transmission is accomplished by reading a block of

data at a time from a file and then transmitting it. The

I blocks of data are continually sent until the end of file is

reached at which time a special block is sent indicating the

end of data.

* File reception is accomplished by receiving the blocks

of data and writing them to a file until the special block

I is received.

Lastly, layer 5 must be able to close the logical

channel and thus, free the channel for future use.

Enumerated Requirements Specifications.

SPECREQ_NUM_5.1 - Layer 5 must be able to initialize
all requirements necessary to operate
at this level.

3 SPECREQ_NUM_5.1.1 - Must be able to load from a storage
device any information required by
Layer 5 initialization which is
subject to change. This is to
facilitate changes, by requiring
changes only to the information in
the storage device and not to the
program's source code.

SPECREQNUM_5.2 - Must be able to transmit a variable
length NETOS message.

37

I

SPECREQ_NUM_5.2.1 - Should be able to map the logical
resource name to the physical host3process codes for both the source and
destination.

SPEC_REQNUM_5.2.1.1 - If an invalid logical resource name,
should return an error code.

SPEC_REQ_NUM_5.2.2 - Should establish a connection; if no
errors, send the NETOS message over
the channel; and then close the
connection.

SPECREQ_NUM_5.3 - Must be able to receive a variable
length NETOS message.

I SPEC_REQ_NUM_5.3.1 - Should be able to map the logical
resource name to the physical host
process codes for both the source and
destination.

SPEC_REQ_NUM_5.3.1.1 - If an invalid logical resource name,3 should return an error code.

SPECREQ_NUM_5.3.2 - Should establish a connection; if no
errors, receive the NETOS message
over the channel; and then close the
connection.

SSPEC_REQ_NUN5.4 - Must be able to transmit a variable
length file.

SPEC_REQ_NUM_5.4.1 - Should be able to map the logical
resource name to the physical host
process codes for both the source and

S destination.

SPEC_REQ_NUM_5.4.1.1 - If an invalid logical resource name,
should return an error code.

SPECREQ_NUM_5.4.2 - Should establish a connection; if no
errors, send the file over the
channel; and then close the
connection.

SPECREQ_NUM_5.4.2.1 - Should open the file.

SPECREQ_NUM_5.4.2.2 - Should transmit the file a block, of
size MSIZE, at a time.

I 38

Ii

U SPEC_REQ_NUM_5.4.2.3 - If the last data in the file is less
than MSIZE, then adjust the block so3 that it is the same size as the data.

SPEC_REQ_NUM_5.4.2.4 - When the EOF is reached some how
indicate to the receiving end that
there is no more data.

SPECREQ_NUM_5.4.2.5 - Should close the file when done.

SPEC_REQ_NUM_5.5 - Must be able to receive a variable
length file.

I SPECREQ_NUM_5.5.1 - Should be able to map the logical
resource name to the physical host
process codes for both the source and
destination.

SPECREQ_NUM_5.5.1.1 - If an invalid logical resource name,
should return an error code.

SPEC_REQ_NUM_5.5.2 - Should establish a connection; if no
errors, receive the file over the
channel; and then close the
connection.

3 SPEC_REQ_NUM_5.5.2.1 - Should create a file and leave open.

SPECREQ_NUM_5.5.2.2 - Should receive the file blocks at a
3 time.

SPEC_REQ_NUM_5.5.2.3 - If the EOF has been reached, then
close the file; otherwise continue
receiving and writing blocks of data
to the file.I

Layer 6

I Narrative Functional Specifications.

3 Layer 6 must be able to support the interface

requirements defined in the Layer 7 protocol. This requires

3 the capability to transmit and receive both request and

status messages by calling on Layer 5. Layer 6 must also be

I able to support the transmission and reception of files.

* 39

U

And finally, Layer 6 should have the capability to send and

receive strings of characters.

Enumerated Requirements Specifications.

SPECREQ_NUM_6.1 - Layer 6 must be able to initialize
all requirements necessary to operate
at this level.

SPECREQ_NUM_6.1.1 - Must be able to load from a storage
device any information required by
Layer 6 initialization which is
subject to change. This is to
facilitate changes, by requiring
changes only to the information in
the storage device and not to the
program's source code.

SPEC_REQ_NUM_6.2 - Must be able to transmit a NETOS
* request message.

SPECREQ_NUM_6.2.1 - Must be able to build a NETOS request
message from the input parameters.

SPECREQ_NUM_6.2.2 - If any input parameters are invalid,
then return an error code.

SPECREQ_NUM_6.2.3 - Should return a status code
indicating the status of the
transmission.

SPECREQ_NUM_6.3 - Must be able to transmit a NETOS
status message.

SPECREQ_NUM_6.3.1 - Must be able to build a NETOS status
message from the input parameters.

SPECREQ_NUM_6.3.2 - If any input parameters are invalid,
then return an error code.

SPECREQ_NUM_6.3.3 - Should return a status code
indicating the status of the
transmission.

SPECREQ_NUM_6.4 - Must be able to transmit a NETOS
string.

40

H SPECREQ_NUM_6.4.1 - Must be able to build a NETOS string
message from the input parameters.

I SPECREQ_NUN_6.4.2 - If any input parameters are invalid,
then return an error code.

SPECREQ_NUM_6.4.3 - Should return a status code
indicating the status of the
transmission.

SPECREQ_NUM_6.5 - Must be able to transmit a NETOS
file.

I SPE7_REQ_NUM_6.5.1 - If any input parameters are invalid,
then return an error code.

SPECREQ_NUM_6.5.2 - Should return a status code
indicating the status of the
transmission.

SPECREQ_NUM_6.6 - Must be able to receive a NETOS
request message.

I SPECREQNUM_6.6.1 - If any input parameters are invalid,
then return an error code.

SPEC_REQ_NUN_6.6.2 - Must be able to extract the output
parameters from the received NETOS
request message.

SPECREQ_NUM_6.6.3 - Should return a status code
indicating the status of the

* reception.

SPECREQ_NUM_6.7 - Must be able to receive a NETOS
status message.

SPEC REQ_NUM_6.7.1 - If any input parameters are invalid,
then return an error code.

I SPECREQ_NUM_6.7.2 - Must be able to extract the output
parameters from the received NETOS

* status message.

SPEC_REQ_NUM_6.7.3 - Should return a status code
indicating the status of the
reception.

SPECREQ_NUN_6.8 - Must be able to receive a NETOS
* string.

41

I

SPECREQ_NUM_6.8.1 - If any input paramneters are invalid,
then return an error code.

SPEC_REQ_NUM_6.8.2 - Must be able to extract the output
parameters from the received NETOS

* string message.

SPECREQ_NUM_6.8.3 - Should return a status code
indicating the status of the
reception.

SPEC_REQ_NUM_6.9 - Must be able to receive a NETOS file.

SPECREQ_NUM_6.9.1 - If any input parameters are invalid,
then return an error code.

SPEC_REQ_NUM_6.9.2 - Should return a status code
indicating the status of the
reception.

I
I
I

I
I
I
I
I
* 42

I

I
I

III. Design, Implementation, and Testing

I Introduction

I Following software engineering principles, the system

requirements are transformed into a detail design

representation of the software and then the detail design is

transformed to the implementation of the software code.

Since there were relatively few changes to the requirements

of the old NETOS system, the design is very similar to the

design of the old system. The one major change is

contributed to allowing variable length messages. The design

and implementation of the new NETOS software shall be

I discussed beginning with the library package which supports

the ISO Layers, followed by each ISO Layer, and then lastly

the Central System. Appendix A contains the test plan for

* the software code and Appendix B contains the User's Manual.

The structure charts, which were produced from the SADT

I diagrams, and the source code are kept on file by the LSINET

manager, presently Dr. Hartrum.

NETOS Library

From the beginning, it became apparent that a separate

library package containing various subroutines which perform

simple and common operations would be helpful and would

5 simplify the coding of the ISO Layers.

I 43
I

I

I In order to allow the transmission of binary files and

* other data not confined to the standard ASCII set which

utilizes 7 bits, a type that includes the extended ASCII

I set, which utilizes a full 8 bits, is required. Janus Ada

provides such a type called BYTE. However a frame, packet,

and message are made up of several bytes, thus an array of

bytes was needed. Moreover, since the lengths of the

frames, packets, and messages will be variable, a new type

called BSTRING was designed which consisted of a record with

two fields. One field contains an array of bytes, and the

other field contains the current length of valid data in the

array. Since arrays are required to be constrained by Ada,

a maximum length had to be established for the array. The

array had to be large enough to hold a maximum frame length.

Two bytes of tne frame were chosen to contain the frame

length. Thus, the maximum frame length is 64K bytes.

However, a frame of this size will resort in other hosts

being deprived of the Central System due to the long

transmission time required to transmit 64K bytes. So at

Layer 6, a limit is arbitrarily set to bound the frame

I length to 510 bytes. Therefore, the maximum array length

3 was arbitrarily set to 1024. This more than meets the

limited maximum frame length while establishing an upper

limit to the size of the string, since the string is

converted to a BSTRING, that can be sent at the Layer 6

I level.

I 44

I

I
I

Getting the time stamp proved to be more complicated

than was expected. The CALENDAR package provided by Janus

Ada was used. However, the time had to calculated into its

various parts; hours, minutes, seconds, and fraction of

seconds. These parts are transformed into strings. The

strings are concatenated to form one string with the

appropriate delimiter inserted between the parts. The final

* result is a string of length 11 containing the proper time

stamp format: HH:MM:SS.FF

* Several routines were designed to allow ease in the

transforming of one type to another such as CHARACTER to

I BYTE. Also several routines were design to operate on the

new type BSTRING. This includes concatenating items to form

a BSTRING, deleting BYTES from a BSTRING, transforming

3 BSTRINGS to STRINGS and STRING to BSTRING, and several

variations of these with various types.

Layer 1

* Layer 1 was functionally divided into five modules:

initialize the port, write a byte to port, read a byte from

the port, determine if port is ready to receive a byte for

output and, determine if port has a byte ready for input.

Since Layer 1 is responsible for the interfacing with the

serial communication ports; low level routines are required.

JANUS Ada provides two ways to access the communication

ports. The first is through the use of a JANUS Ada

45

U
I

supported assembly language. The second is through the use

of the UTIL library package supplied by Janus Ada. The

* second approach was taken in order to maintain the code at

as high a level as possible and thus keep the code as simple

* as possible.

The UTIL library contains the procedure SIMPLEINTCALL

which supports IBM ROM-BIOS service interrupts. Services 0-

1 3 of interrupt 20 (14 hex) were used to initialize the

ports, send a byte, receive a byte, and get the port status.

Care had to be taken while using SIMPLEINTCALL as the port

number had to be corrected since the ROM-BIOS identifies

port 1 as port 0, port 2 as port 1, and so on. Also care

had to be taken, since the register input to SIMPLEINTCALL

was defined as integers, but the transmission of data had to

3 be in bytes. The type BYTE allows full use of the entire 8-

bit ASCII set, which is required in order to transmit binary

I files. The type CHARACTER can not support a full byte of

data as it is restricted to a 7-bit ASCII set, while the

type INTEGER is less restricted and thus would result in

* errors if an attempt was made to transmit a value greater

than 256 (8-bits).

I The initialize routine and the two status routines

* provide the calling module with status of its operation.

Following the old NETOS software, the initialize routine

supports only baud rate of 1200, 2400, 4800, 9600 bits per

I 46

I

second. Baud rates other than these or an error while

initializing the port will be reported back to the calling

module. The two status routines notify the calling module

whether the port is ready or not, thus they return a

boolean.

Layer 2

Due to the size of the Layer 2 software, two

subpackages support the Layer 2 package; one for the send

portion and one for the receive portion. These three

packages will be described in the following order: first,

the send portion; next, the receive portion; and finally,

the overall Layer 2 package.

Send Portion.

The send portion basically provides for the sending of

a frame. This is divided into five modules: calculate a

checksum, build the frame, handle the NETOS handshake, send

the frame, and receive the acknowledgement.

The checksum is calculated in the same manner as in the

old NETOS software. All the bytes of the packet are added

up and the lower byte of the result is returned as the

checksum. Since the LSINET has proven to be very reliable,

this simple checksum provide ample error detection

capability.

The frame is built by simply concatenating the various

parts to form one BSTRING. An ASCII SOH indicates the

47

beginning of the frame. In order to support variable length

frames, a frame length field of two bytes is provided. This

allows a frame to be the maximum length of 64K bytes. The

variable length packet and its checksum are included in the

frame. And finally, an ASCII ETX indicates the end of the

frame.

After examining this format on the protocol analyzer it

became apparent that delimiters were required to separate

the different fields. It was very hard to distinguish which

bytes belonged to which field without having to count the

individual bytes in order to determine its position.

Delimiters separate the various fields and thus provide

easier recognition of the data. Some throughput is lost but

is regained since this format uses only one ASCII ETX while

the old format utilized five ASCII ETXs. In contrast with

the old system which used five consecutive ASCII ETXs to

indicate the end of data in the event the original frame

length was altered, a timeout interval is used in receiving

each byte. If the timeout interval expires, then the

checksum verification should fail, a NAK returned to the

sender, and a reattempt made in sending the frame.

The LSINET handshake requires that the source sends a

transmit request (TR) and the receiving end sends back a

transmit acknowledge (TA) before data can be transmitted.

This software uses the same TR , an ASCII B, and the same

48

I

TA, an ASCII A, as the old software. A timeout interval is

provided to ensure a hang up does not occur. The timeout

interval is approximately 3.7 seconds. The results are

I returned to the calling module. Possible result conditions

are; the handshake was successful, the timeout occurred

before a TR was able to be sent, a TA was not received

3 within the timeout interval, or something other than a TA

was received.

I The frame is sent out the port byte-by-byte. Again a

timeout interval is provide to ensure the system does not

hang up. If the timeout expires, the sending of the frame

3 is aborted. The receiving end should return a NAK which

will signal the Layer 2 package to try sending the frame

* another time.

3 Receive Portion.

The receive portion provides for the receiving of a

£ frame. This is divided into five modules: handle the NETOS

handshake, receive the frame, verify the checksum, send back

an acknowledgement, and extract the packet from the received

3 frame. receive the acknowledgement.

The results of the handshake attempt are returned to

U the calling module. Possible result conditions are; the

handshake was successful, the timeout occurred before a TR

was received, something other than a TR was received, or a

3 TR was received but the timeout occurred before a TA could

1 49

I

I
be sent back.

3 The frame is received by first examining the frame

length field and attempting to receive that many bytes. A

U timeout is provided to ensure no hang up occurs. The frame

is built by concatenating the bytes to reform the original

sent frame.

3 Possible results that can be returned to the calling

module are as follows; the first byte was not a ASCII SOH,

I the timeout occurred before the entire frame was received,

* or the entire frame was received.

The verify checksum module calculates the checksum of

3 the received packet and compares it with the checksum that

was sent in the frame. A boolean is returned; TRUE if they

3 match, FALSE if they do not match.

Based on the results of the verify checksum module, an

ASCII ACK is sent back if the checksums matched, or an ASCII

5 NAK is sent back if the checksums did not match.

Last, the packet is extracted from the frame by

3 deleting the frame header bytes, the SOH and frame length

field, and deleting the frame trailer bytes, the checksum

I and the ETX.

Overall Layer 2 Package.

i The Layer 2 package provides three functions:

initialize Layer 2, send a packet, and receive a packet.

5 Although Layer 2 does not require any initialization, the

50

initialize Layer 2 module, which simply calls the initialize

Layer 1 module, is required in order to maintain the ISO 7-

Layer model. The send module follows the old NETOS

software of allowing three attempts to establish a LSINET

handshake and three attempts to try to send a frame.

Multiple attempts are made due to the assumption that the

transmission across the network is unreliable. Three

attempts was arbitrarily chosen. It does this by calling on

the modules in the send subpackage described above. The

receive module receives a frame and extracts the packet by

calling on the modules in the receive subpackage described

above.

Layer 3

This layer is divided into three main functions:

initialize Layer 3, send a message, and receive a message.

A global table is provided to all three modules. This table

maps the SRC/DST codes to the port number which is linked to

that SRC/DST host and the baud rate for that port. This

table is configured as an array of records, where the record

contains the three fields; SRC/DST code, port number, and

baud rate. Table III list the SRC/DST codes.

51

TABLE III.
SRC/DST Codes

A - Work Station A
B - Central System
C - Work Station C
D - Work Station D
E - Work Station E
F - Work Station F
G - Work Station G
H - Work Station H
I - Work Station I
J - Work Station J
* - Any Host (don't care)

The initialize Layer 3 module calls on a submodule to

build the global table from data contained in a file

PTABLE.DAT. This allows any changes to the port roLting and

configuration to be as simple as making a change to file.

Figure 5 contains a listing of PTABLE.DAT. Once the table

is built, each entry is passed to the initialize Layer 2

module in order to initialize the ports.

A 1 9600
B 1 9600
C 1 9600
D 1 9600
E 1 9600
F 1 9600
G 1 9600
H 1 9600
I 1 9600
J 1 9600

Figure 5. PTABLE.DAT

52

I
I

The send message module builds a packet by

concatenating the various fields to form a packet. The

packet consists of the SRC/SPN/DST/DPN codes, the system

I message byte, the message, and the time stamp. The system

* byte indicates whether this message is a Layer 3 system

message, presently there are no Layer 3 system message

3 defined. An ASCII 1 indicates a Layer 3 system message

while an ASCII 0 indicates a normal message. Presently a

I Layer 3 system can only be sent by setting the appropriate

5 parameter in the Layer 6 SENDNETOSSTRING module. After

the packet has been built, the DST code is sent to a

* submodule which looks up in the global table the correct

port to route the packet on. The packet is then sent by

i calling on Layer 2.

The receive message module is divided into two parts;

receive a message from a particular host, and receive a

5 message from any host. The SRC byte determines which course

to take, where an ASCII * indicates receive from any host.

3 When receiving a message from a particular host, the

SRC code is passed to a submodule to locate the correct port

to receive, attempts are made to receive a packet until a

I3 packet is received without error (since this is a non-

interrupt version, Layer 3 continues 'listening' until a

3 valid packet is received), the SRC and DST codes of the

packet are evaluated to see if they match with what was

expected. If they do not match, then discard the packet and

53

try again. If they do match, then extract the message from

the packet by deleting the packet header and trailer,

evaluate the system message byte to determine whether to

pass the message to the process system message module or to

pass the message back to the calling module.

When receiving a message from any host, the entries in

the global table are polled, the host codes are looked up

along with port number associated with it, and an attempt is

made to receive a packet on that port. If an error occurs

or no packet was found, then continue to poll by trying the

next entry in the table. If a packet was received then

extract the message from the packet by deleting the packet

header and trailer, evaluate the system message byte to

determine whether to pass the message to the process system

message module or to pass the message back to the calling

module.

Layer 4

This layer is divided into six main functions:

initialize Layer 4, establish a connection from a sender

point of view, establish a connection from a receiver point

of view, close a connection, send messages, and receive

messages. A global table is provided to all the modules.

This table contains the channel assignments. It maps the

SRC/SPN/DST/DPN codes to a particular channel number. There

are presently a total of nine channels. The limit of nine

54

channels was chosen since there are nine workstations

presently on the network. This table is configured as an

array of records, where the record contains the six fields;

SRC, SPN, DST, DPN, channel number, and a used field.

The initialize Layer 4 module build the global table,

initiating it so all channels are available, and then calls

the initialize Layer 3 module.

The module which establishes a connection from a sender

point of view first calls a submodule to to locate a free

channel. This submodule first counts all the used channels.

A maximum of nine channel was arbitrarily chosen since there

are nine workstations on the network. If the count equal to

nine, it then returns a error indicating all channels are in

use. Otherwise a channel is assigned.

If the submodule returns no errors, a request channel

message, a 1-byte message containing a ASCII R, is sent to

the desired destination. If the destination is able to set

up a connection at its end it will return a valid channel

response message, a 1-byte message containing a ASCII V,

otherwise it will return an invalid channel response

message, a 1-byte message containing an ASCII I. Once the

response message is decoded, the channel is either returned

to the calling module or its is freed and an error is

returned indicating the problem.

The module for establishing a connection from a

55

receiver stand point first receives a message, and then

determines if it is a request channel message. If the

message is not a request channel message, then try getting

anther message. If message is a request channel message,

then it is evaluated to see if the message is for the

correct connection. If for the correct connection, then

call the submodule to assign a channel. If a channel can be

assigned then, return a valid channel reply to the source

and return the channel number to the calling module. If a

channel can not be assigned, then return an invalid channel

reply to the source and return the error code indicating the

problem to the calling module.

The close connection module looks up the channel in the

global table and deletes the assignment thus freeing the

channel. If the channel could not be found then an error

code is returned otherwise a no error code is returned.

There is no handshaking requirement with the other end.

Each end must independently terminate its own connection.

This is accomplished by Layer 5.

The send messages module first looks up the

SRC/SPN/DST/DPN codes in the global table from the channel

number. These codes are used by Layer 3 to build the

packet. The message is then broken off msize, msize is the

variable length message size specified by the application

program, bytes at a time and sent submessage by submessage

until the original message is less than or equal to msize

56

I
I

bytes. At this time the remainder of the message is sent

and then a message of 25 null bytes is sent indicating the

e nd of message to the destination. The special end of

message consisting of 25 null bytes was arbitrarily chosen.

* The receive message module first receives a message,

and then compares the message SRC/SPN/DST/DPN codes with

that of the channel number. If they do not nratch up, then

try getting another message. If they do match up, then

continue building back the original message from these

3 submessages until an end of message is received.

3Layer5
The Layer 5 package contains five main modules:

5 initialize Layer 5, send a NETOS message, receive a NETOS

message, send a file, and receive a file. A global table is

provided which maps the logical host names with the physical

5 host/process codes. This table is configured as an array of

records, where each record contains three fields: one for

3 the logical host name, a string of length 10; another for

the host code, a character; and the last for the process

I number, an integer from 1-9.

* The initialize Layer 5 module builds the global table

from data in the file HTABLE.DAT. This simplifies all

3 changes to the host assignments as simply a matter of

changing data in a file.

I The send NETOS message module simply looks up the

* 57

I

source and destination codes from the global table,

establishes a connection, sends the NETOS message, and then

closes the connection. The status is returned to the

calling module indicating if there were any problems or if

the NETOS message was sent successfully.

The receive NETOS message module simply looks up the

source and destination codes from the global table, and

establishes a connection. If attempting to receive a NETOS

message from any source, the Layer 4 establish connection

module will return the SRC/SPN/DST/DPN codes for this

connection. These codes are then mapped back to the

physical host names from the global table. The NETOS

message is then received, and the connection is then closed.

The status is returned to the calling module indicating if

there were any problems or if the NETOS message was received

successfully.

The send file module is basically the same as the send

NETOS message module except after a connection is

established, the file is opened and data from the file is

read and sent a block, of length msize, at a time. When the

there is less than a block of data left, the remaining data

is sent and then a block of 50 null bytes is sent to

indicate the end of file to the destination. After this,

the file is closed and connection is closed. If there were

any errors, the file and connection both are closed and the

58

error code is returned to the calling module.

The receive file module is also basically the same as

the receive NETOS message module except after the connection

is established, a file is created and data is received and

read to the file until a end of file block is received.

After this, the file is closed and the connection is closed.

If there were any errors, the file and connection both are

closed and the error code is returned to the calling module.

Layer 6

There are seven main modules at the Layer 6 level:

initialize layer 6; and send and receive, NETOS request,

NETOS status, NETOS string, and NETOS file. All input

parameters are checked for validity. The valid parameters

are listed in Appendix B, the user's manual. Although, the

initialize Layer 6, send NETOS file, and receive NETOS file

modules do nothing more that call their corresponding Layer

5 modules, they are required in order to maintain the ISO 7-

Layer model.

The send modules simply build a NETOS message by

concatenating the input parameters to form the NETOS message

and then send the NETOS message by calling on Layer 5.

Likewise the receive modules simply extract the output

parameters from the received NETOS message and pass the

parameters to the calling module.

59

Central System

3 Since the Central System is an LSI-11/23 microcomputer

and as such does not support Ada, the coding had to remain

in the programming language C. Therefore the old NETOS

source code was modified rather than rewritten.

Unfortunately, the only available listing of the source code

was for Version 1.8 while the currently running version was

1.9. Therefore, more modifications had to be made than was

expected just to bring the system up to the present version.

There were two major changes required to bring the

system up to date. The port vectors had to be updated.

This was accomplished by examining the file PTABLE.DAT for

the new vectors. Also, the hosts designated as monitor

stations were reassigned to the hosts specified in the

latest version.

Once the software was brought up to date, the

modifications to allow variable length frames were

accomplished. The main routine was modified by eliminating

the prompt to the user for varying the message size in the

initialize central system module. This included eliminating

the parameter 'msize' passed when calling the initialize

central system module. This was no longer needed since the

frame will contain the frame length. Also, the version

number displayed on the monitor was changed to Version 2.0.

Rather than allocating space for a packet, receiving a

frame, converting it to a packet, then converting the packet

60

i
I

back to a frame, and transmitting the frame; it appeared

much simpler to leave everything at the frame level. Since

3 the frames are variable in length, the maximum space

required by a frame is allocated, the frame is received, and

3 then retransmitted to the destination. No changes were

required at the Layer 1 level.

The ISO Layer 2 receive module had to be changed to

handle variable length frames. The frame length field of

the received frame must be examined in order to determine

3 how many bytes to receive. Therefore, the receive frame

module was changed to first examine the frame length and

then receive the specified number of bytes. The verify

3 checksum module was modified to allow variable length

frames. If a frame is successfully received, then the

* entire frame is stored in a buffer and a pointer to the

buffer is passed to the ISO Layer 2 send module.

U The ISO Layer 2 send module also had to be changed to

i handle variable length frames. First the frame size is

calculated by examining the frame length field, and then the

3 specified number of bytes from the buffer are transmitted.

A modification was also made to correct the problem of

* error messages from previous transmitted frames remaining on

the monitor of the Central System. This was corrected by

allowing a message to be displayed for frames received with

3 no errors. Thus the 'no error' message overwrites the

3 61

U

I

I previous error message. Therefore, the message displayed on3 the monitor always corresponds to the last received message.

I

I
I
I
I
I
i
i
I
I
i
1
I
5 62

I

IV. Conclusions and Recommendations

Conclusions

The goal of this thesis effort was to correct the

various discrepancies found in the previous software, make

the necessary modifications to allow variable length

messages, and write the code in the Ada programming

language. The conclusions to these three tasks are

described as follows.

The task which required the least amount of effort was

correcting the discrepancies found in the previous software.

The problem areas were neither large in scope or complex.

It appears most discrepancies were probably due to a lack of

communication with other groups working on related modules

or due simply to carelessness. More time was taken in

discovering the discrepancies than was taken to actually

correct them.

The task of making modifications to allow variable

length messages proved to be more difficult than was

expected. Modifications had to be made both on the software

for the worstations, implemented in Ada, and on the software

for the central system, implemented in C. Extra effort was

required not only because of the two different languages but

also because there was no documentation or source code for

the current operating version, Version 1.9, of the software

63

running on the central system.

The task of implementing the software in Ada proved to

be the most time consuming. The length of the code grew to

be quite large. However by maintaining the ISO 7-Layer

Model and 'packaging' the code into the appropriate layers,

the task did not become overwhelming. A library package was

developed, NETLIB, to provide modules which performed common

routines for all the layers. Fortunately, Janus/Ada had a

library package, DOSCALL, which provided low-level I/O

3 routines. A type BSTRING was defined to allow a variable

length array of type BYTE. This allowed for easy

manipulation of bytes to frames to packets to messages. The

hard typing of Ada had to be overcome as there were frequent

requirements to convert from one type to another. However,

this was remedied by providing these common conversion

routines in the library package NETLIB.

Recommendations

There are an endless number of future enhancements and

research projects which could follow up on this thesis

effort. Some areas include user application software,

performance evaluation, and flow control.

Presently there are no application programs utilizing

this network. Developing application programs such as a

Printer Spooler, a Mass Storage System, or a Database

Management System would not only improve the support of the

64

I

software systems laboratory but would also provide a

realistic project in applying software engineering

techniques.

A performance analysis of the network should be

conducted to measure performance parameters and analyze flow

of traffic and delay throughout the network. From this

analysis, improvements can be made to increase network

performance.

A potential problem exists with the way the end-of-

message and end-of-file are handled. For instance, if a

file contains 50 consecutive nulls, a string of 50

consecutive nulls is used as the end-of-file indicator, and

the variable message length is specified as 50, then there

exists the chance that the 50 consecutive nulls in the file

will be blocked off as a message length of 50. This will

mislead the receiver into beleiving that this data is the

end-of-file indicator. Thus, the receiver will not attempt

to receive the rest of the file. This problem is currently

be worked on by EENG 7.93, Advanced Software Engineering.

Now that the network allows for variable length

message, the next step to take would be to let the network

control the flow of traffic through the network by

monitoring the traffic and dictating to the worstations the

maximum frame size they can transmit. When traffic is low,

the maximum frame size can be increased. When traffic is

65

high, the maximum frame size should be decreased to allow

fair access to the network by all users. The dictating of

the maximum size could be handled with a Layer 4 System

Message, similar to the Layer 3 System Message, since Layer

4 is responsible for dividing the data to be transmitted up

into messages.

66

U
I
* APPENDIX A

Test PlanI
* Testing consisted of three phases; testing of

individual modules, testing of each layer, and system

5 integration testing. As each module was being coded, it was

tested. Once all the modules which comprise a layer

I successfully passed their tests, the layer as a whole

3 underwent testing. Each layer was built and tested on lower

layers which had successfully passed their tests. Once all

5 the layers had been tested, the entire system was tested.

The test plan and the test results are listed by layers

i starting with Layer 1 and finishing with Layer 6.

I
i
i
I
I

I

i 67

i

TEST PLAN 29 OCT 88

for Layer1

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

1. Test Initialize_
Layerl

a. Enter a negative a. Should return status a. Passed
integer for port. code #102.

b. Enter the integer: 01b. Should return status b. Passed
for the port. code #102.

c. Enter the integer: 11c. Should return status c. Passed
for the port. code #0.

d. Enter the integer: 2:d. Should return status d. Passed
for the port. code #0.

e. Enter a integer le. Should return status e. Passed
value greater than 2 code #102.
for the port. I

f. Enter a negative f. Should return status f. Passed
integer for the baud: code #101.

g. Enter the integer: 01g. Should return status g. Passed
for the baud. code #101.

h. Enter the integer: h. Should return status h. Passed
1200 for the baud. code #0.

i. Enter the integer: i. Should return status i. PassedI 2400 for the baud. I code #0.
j. Enter the integer: Ij. Should return status j. Passed

4800 for the baud. code #0.
k. Enter the integer: k. Sturn status :k. Passed

9600 for the baud. code #0.
1. Enter an integer 11. Should return status 11. Passed

other than 1200,2400 code #101.
4800, 9600 for the
baud. I

I 2. Test InputPort.
Sending various data,3 to the ports.

a. Enter the integer: 1a. Should return the Ia. Passed
for the port. I byte read from port 11

b. Enter the integer: 21b. Should return the b. Passed
for the port. 1 byte read from port 2

m 68

I

I

TEST PLAN 29 OCT 88

3 for Layer 1

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

3. Test Output_Port.
Output various data.:

a. Enter the integer: 1:a. Should write the byte:a. Passed
for the port. to port 1.

b. Enter the integer: 21b. Should write the byte b. Passed
for the port. to port 2.

4. Test InputPortNot:
Ready.

NOTE: For a-e the
port is set clear to:

* receive.

a. Enter a negative a. Should return booleanta. Passed
integer for the port of FALSE.

b. Enter the integer: Ob. Should return boolean b. Passed
for the port. of FALSE.

c. Enter the integer: 11c. Should return boolean c. Passed
for the port. of TRUE.

d. Enter the integer: 21d. Should return boolean d. Passed
for the port. of TRUE.

e. Enter an integer e. Should return booleanle. Passed
value greater than 2 of FALSE.
for the port.

NOTE: For f-g the
port is not set
clear to receive.

U f. Enter the integer: 11f. Should return booleanlf. Passed
for the port. I of FALSE.

g. Enter the integer: 21g. Should return booleanlg. Passed
for the port. of FALSE.

I
I
* 69

I

i

I TEST PLAN 29 OCT 88

* for Layer 1

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

5. Test OutputPortNot
-Ready.

NOTE: For a-e the
port is set clear toI
receive.

a. Enter a negative a. Should return boolean a. Passed
integer for the port of FALSE.

b. Enter the integer: 01b. Should return boolean b. Passed
for the port. of FALSE.

c. Enter the integer: 11c. Should return boolean c. Passed
for the port. of TRUE.

d. Enter the integer: 21d. Should return boolean d. Passed
for the port. of TRUE.

e. Enter an integer e. Should return booleanle. Passed
value greater than 2 of FALSE.
for the port. I

NOTE: For f-g the
port is not set
clear to receive.

f. Enter the integer: 11f. Should return boolean f. Passed
for the port. of FALSE.

g. Enter the integer: 2,g. Should return boolean g. Passed
for the port. of FALSE.I

I
i
i
I
* 70

I

TEST PLAN 29 OCT 88

I for Send Portion of Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

1. Test for Calc_Check-I sum.

a. Enter a null packet. a. Should return a byte a. Passed
II of value 0.

b. Enter variable b. Should return a byte b. Passed
length packets with of value equal to the
variable data. lower byte result of

the sum of all the
data bytes.

2. Test Build Frame.

a. Enter the various a. Should return a a. Passed
values data for the bstring of the properl
packet, psize, and frame format.

I checksum.

3. Test SendTRWaitTA

a. Set port not ready. a. Should return status a. Passed
I code #201.

b. Set port ready, but b. Should output a 'B' b. Passed
do not transmit a through the port, and:
reply to the port. should return status

code #202.

c. Set port ready, and :c. Should output a 'B' :c. Passed
transmit a 'A' reply through the port, and:

should return status
I code #0.

d. Set port ready, and d. Should output a 'B' d. Passed
transmit any reply through the port, and:
other than 'A'. should return status

code #203.

71

1 TEST PLAN 29 OCT 88

i for Send Portion of Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

4. Test SendFrame.

a. Enter the frame. :a. Should output the Ia. Passed
frame byte-by-byte
through the port.

5. Test WaitforACK I
NAK

a. Do not transmit a a. Should return status a. Passed
reply to the port. code #204.

b. Transmit an ASCII 1b. Should return status b. Passed
ACK to the port. code #0.

c. Transmit an ASCII c. Should return status Ic. Passed
NAK to the port. I code #205.

d. Transmit something :d. Should return status d. Passed
other than an code #206
ASCII.ACK or NAK

7
I
I
I
I
I
I

I 72

I

I

H TEST PLAN 29 OCT 88

3 for Receive Portion of Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

i. Test WaitforTR_
SendTA.

a. Do not transmit a :a. Should return status a. Passed
'B' to the port. code #211.

b. Transmit anything b. Should return status 1b. Passed
other than a 'B' to code #212.
the port.

c. Set output port not c. Should return status Ic. Passed
ready and transmit a code #213.
'B' to the port.

d. Set output port d. Should output a 'A' d. Passed
ready and transmit a through the port, andl
'B' to the port. return a status code

I #0.

2. Test ReceiveFrame.

a. Send less than 4 a. Should return a null :a. Passed
bytes of a frame. frame and a status

I b tcode #214.
b. Transmit a frame b. Should return a null b. Passed

that does not begin frame and a status
begin an ASCII.SOH. code #215.

c. Transmit a frame c. Should return the :c. Passed
that begins with an frame received at
ASCII.SOH, send at that point and a
least 4 bytes but status code #216.
not all the frame.

d. Transmit a frame d. Should return the Id. Passed
that begins with an frame and a status
ASCII.SOH, send the code #0.
entire frame.

I
I
I
I 73

I

I
I

TEST PLAN 29 OCT 88

3 for Receive Portion of Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

3. Test VerifyCheck-
SUM.

a. Enter a frame with :a. Returns a boolean :a. Passed
correct checksum. TRUE.

b. Enter a frame with b. Returns a boolean b. Passed
an incorrect check- FALSE.isum

4. Test SendACKNAK.II
a. Set port not ready. :a. Aborts sending ack/ a. Passed

nak.
b. Port ready, byte b. Should output an b. Passed

value set equal to ASCII.ACK to the port
ASCII.ACK.

c. Port ready, byte c. Should output an Ic. Passed
value set equal to ASCII.NAK to the portI
ASCII.NAK.

i 5. Test Extract Packet
FromFrame.

a. Input various framesla. Removes the frame :a. Passed
header and trailer,
returns the packet.

I
I
I
I

I

I
I

TEST PLAN 29 OCT 88

for Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

I. Test the sending of
a packet.

a. Do not allow proper a. Should return status a. Passed
NETOS handshake. code of handshake

error.
b. Allow proper NETOS b. Should send the framelb. Passed

handshake on the byte-by-byte. Status
ist try. code #0.

c. Allow proper NETOS c. Should send the frame c. Passed
handshake after the byte-by-byte. Status
1st try. code #0.

d. Allow proper NETOS d. Should send the frameld. Passedhandshake after the byte-by-byte. Status

I 2nd try. E code #0.
e. Allow proper NETOS e. Should return status e. Passed

handshake after the code of handshake
3rd try. error.

f. Do not allow an ACK If. Should return status f. Passed
reply. code of ACK/NAK error

g. Allow proper ACK g. Should return status g. Passed
Ireply on the 1st tryl code #0.

h. Allow proper ACK h. Should return status h. Passed
reply after the 1st code #0.
try.

i. Allow proper ACK i. Should return status i. Passed
reply after the 2nd code #0.
try.

j. Allow proper ACK j. Should return status j. Passed
reply after the 3rd code of ACK/NAK error
try.

I

75

I
I

TEST PLAN 29 OCT 88

for Layer 2

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

2. Test receiving of a
packet.

a. Do not allow proper :a. Should return status a. Passed
NETOS handshake. code of handshake I

error, and a null
packet.

b. Allow proper NETOS b. Should return status b. Passed
handshake. Receive al code of receive error:
packet with error. and a null packet.

c. Allow proper NETOS c. Should reply with a :c. Passed
handshake. Receive a a NAK, and return a
packet with bad null packet.
checksum.

d. Allow proper NETOS Id. Should reply with a Id. Passed
handshake. Receive a; an ACK and return the:
packet with good packet.
checksum.

i

I
i

i 76

I

U TEST PLAN 29 OCT 88

* for Layer 3

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

i. Test BuildPort_
Array.

a. Let PTABLE.DAT file Ia. Array should contain a. Passed
vary in data and I the same data that
length. was in the file.

U 2. Test Determine Port_
address.

3 a. Let SRC/DST code be a. The corresponding a. Passed
the 1st entry in the: port id should be
table. I returned along with al

I status code #0.
b. Let SRC/DST code be b. The corresponding b. Passed

the last entry in port id should be
the table. returned along with a:

status code #0.
c. Let SRC/DST code be :c. The corresponding Ic. Passed

somewhere in the I port id should be
middle of the table. returned along with al

status code #0.
d. Let SRC/DST code not:d. A port id of #0 is d. Passed

be in table. I returned along with
a status code #301.

3. Test Initialize_
Layer_3.

a. Vary the array a. A status code of #0 a. Passed
length and use valid should be returned. I
port and baud data.

b. Let one of the port 1b. A port error should b. Passed
data be invalid. I be returned as the

status code.
c. Let one of the baud :c. A baud error should :c. Passed

data be invalid. be returned as the
status code.

I
I 77

I

ITEST PLAN 29 OCT 88

for Layer 3

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

4. Test SendMessage.

a. Let DST code not be a. A status code of #301:a. Passed
in the table. should be returned.

b. Let DST code be in b. A status code of #0 b. Passed
the table and vary should be returned
SRC/DST/DST/DPN, and the packet should:
message, msize, and I be built and sent.
the system byte.

5. Test ValidateSRC
DST.

a. Let SRC code of the a. A status code of #3021a. Passed
packet not be what should be returned.
is expected.

b. Let the expected SRCIb. A status code of #0 lb. Passed
code be the wildcard should be returned.
ASCII.*. I

C. Let SRC codhe t c. A status code of #0 c. Passed
packet be what is should be returned.
expected.

d. Let DST code of the d. A status code of #303 d. Passed
packet not be what I should be returned.
is expected.

e. Let the expected DSTIe. A status code of #0 le. Passed
code be the wildcardl should be returned.
ASCII.*.

f. Let DST code of the If. A status code of #0 If. Passed
packet be what is should be returned.
expected.

6. Test ExtractMessage
_FromPacket.

a. Vary the packet. a. Should return the Ia. Passed
I message, SRC/DST/SPN/:

DST codes, and the
systemmsg byte.

78

TEST PLAN 29 OCT 88

for Layer 3

TEST EXPECTED TEST
I CONDITIONS ACTION RESULTS

7. Test ReceiveMessage:

a. Let the SRC code be Ia. Should return any a. Passed
the wildcard ASCII.* message received with:
and not a systemmsg the SRC/SPN/DST/DPN
(system msg byte=0) codes and status code:

of #0.
b. Let the SRC code be b. Should call the layer b. Passed

the wildcard ASCII.* 3 systemmsg routine.:
and a systemmsg
(systemmsg byte=l)

c. Let the SRC code not c. Should return the :c. Passed
be the wildcard I expected message with:
ASCII.* and not a the SRC/SPN/DST/DPN

system msg. codes and status code:
of #0.

d. Let the SRC code not d. Should call the layerld. Passed
be the wildcard 3 system msg routine.:
ASCII.* and a
system msg.

79

TEST PLAN 29 OCT 88

for Layer 4

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

1. Test BuildChannel
Table.

a. Build the table. a. Table built with a. Passed
initial values.

2. Test Establish
ChannelNum.

a. Let all channels be a. Returns a channel # 01a. Passed
in use. and status code 402.

b. Let a channel be b. Returns a channel # 0 b. Passed
available, but one and status code 401.
end of the connect-
ion already in use.

c. Let a channel be c. Returns the next c. Passed
available and both available channel #
ends of the connect-I and a status code 0.
ion not in use.

3. Test Connect.

a. Let there be an a. Returns a channel # o:a. Passed
establish channel and an establish
error. error.

b. Let there be a send 1b. Returns a channel # 01b. Passed
message error. and a send msg error.

c. Let the reply be c. Returns a channel # 01c. Passed
invalid. I and a status code 4031

d. Let the reply be Id. Returns the next d. Passed
valid. available channel # I

and a status code 0. 1

80

TEST PLAN 29 OCT 88

for Layer 4

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

4. Test Listen.

a. Receive an invalid Ia. Returns a channel # 01a. Passed
channel request. and a status code 4041

b. Let there be a b. Returns a channel # 0,b. Passed
establish error. and an establish

error
c. Let there be a send :c. Returns a channel # 0:c. Passed

message error. and a send msg error.
d. Do not introduce any d. Returns the next d. Passed

errors. I available channel #I and a status code 0.

5. Test Close.

a. Try closing a a. Returns status code Ia. Passed
channel not in the 405.
table.

b. Try closing channel b. Clears the entry in b. Passed
in the table. the table and returnsl

I a status code 0.

6. Test Send.

a. Let there be an a. Returns the error. a. Passed
error in send msg.

b. Send various length 1b. Sends the message in 1b. Passed
messages and msize. lengths of msize

followed by an EOM.
Returns a status codel0.

7. Test Receive.

a. Receive various a. Received messages a. Passed
lengths messages followed by an EOM.

Returns a status code:
1 0.

81

TEST PLAN 29 OCT 88

for Layer 5

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

1. Test DetermineHostj
Codes.

a. Enter an invalid Ia. Returns a status codela. Passed
Host name. 501.

b. Enter a vaild Host b. Returns the host and b. Passed
name. process codes and a

status code 0.

2. Test DetermineHost:
Name.

a. Enter invalid host a. Returns a status code a. Passed
and/or process codes 502.

b. Enter a valid host b. Returns the host namelb. Passed
and process code. and a status code 0.

3. Test Read A Block
FromFile

a. Try a file size lessla. Puts the data in a a. Passed
than the block size. block equal to the

data size and set the:
EOF flag.

b. Try a file size b. Puts a block size b. Passed
equal or greater amount of data in the:
than the block size. block.

4. Test Write A Block
ToFile.

a. Let the block be a a. Sets the EOF flag. Ia. Passed
EOF block.

b. Try various blocks. b. Writes the block of lb. Passed
data to the file.

82

TEST PLAN 29 OCT 88

for Layer 5

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

5. Test Initialize_
Layer_5

a. Try different data Ia. Loads the data in a a. Passed
in HTABLE.DAT Host TableII

6. Test SendNetos_Msg.

a. Let there be a SRCE :a. Returns the error :a. Passed
error. code.

b. Let there be a DEST b. Returns the error b. Passed
error. code.

c. Let there be a :c. Returns the error Ic. Passed
Connect error. code.

d. Let there be a Send d. Returns the error Id. Passed
error. code.

e. Let there be a Closele. Returns the error :e. PassedI error. code.
f. Do not introduce any f. Returns a status codelf. Passed

errors. 0.

7. Test ReceiveNetos5 Message.

a. Let there be a SRCE Ia. Returns the error a. Passed
error. code.

b. Let there be a DEST 1b. Returns the error Ib. Passed
error. code.

c. Let there be a Ic. Returns the error Ic. Passed
Listen error. code.

d. Let there be a SRC/ d. Returns the error d. Passed
SPN error. code.

e. Let there be a DST/ e. Returns the error e. Passed
DPN error. code.

f. Let there be a f. Returns the error f. Passed
Receive error. code.

g. Let there be a Close g. Returns the error g. Passed
error. code.

h. Do not introduce anylh. Returns a status codelh. Passed
errors. 0.

83

I

I TEST PLAN 29 OCT 88

3 for Layer 5

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

8. Test SendFile.

a. Input various errorsla. Returns the error a. Passed
code.

b. Try various files 1b. Sends the file by b. Passed
and Msize. blocks of Msize

I followed by a EOF
I block. Returns a

status code 0.

5 9. Test ReceiveFile.

a. Input various errorsla. Returns the error :a. Passed
I code.

b. Receive various 1b. Writes the received b. Passed
files. data to a local file.

I Returns a status codej
IJ 0 .

I
Ii
Ii

I!

I
I
I

I 84

U

I

1 TEST PLAN 29 OCT 88

* for Layer 6

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

1. Test CheckMsg_Type.1

a. Input an invalid a. Returns a status code a. Passed
Msg_Type. 601.

b. Input a valid Msg_ 1b. Returns a status codelb. Passed
Type. 0.

1 2. Test CheckSRCEDESTI

a. Input an invalid a. Returns a status code a. Passed
SRCEDEST. 602.

b. Input a valid SRCE_ b. Returns a status codelb. Passed
DEST. 0.

3. Test CheckFilename.1

3 a. Input an invalid a. Returns a status codela. Passed
Filename. 603.

b. Input a valid b. Returns a status codelb. Passed3 Filename. 0.

4. Test CheckPriority.

a. Input an invalid a. Returns a status codela. Passed
Priority. 604.

b. Input a valid b. Returns a status codelb. Passed
Priority. 0.

5. Test CheckDest_
Device.

a. Input an invalid a. Returns a status codela. Passed
Dest Device. 605.

b. Input a valid Dest_ b. Returns a status codelb. Passed
Device. 0.

85

I

I TEST PLAN 29 OCT 88

* for Layer 6

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

--- ------------------------ ---..

6. Test CheckStatus_
Character.

a. Input an invalid Ia. Returns a status codela. Passed
StatusCharacter. 606.

b. Input a valid Status b. Returns a status codelb. Passed
-Character. 0.

I_
7. Test SendNETOS_ I

* Request.

a. Input various errorsla. Returns the error. a. Passed
b. Do not input errors. b. Sends the message. b. Passed

I Returns a status code:
0.

8. Test SendNETOS_
Status.

a. Input various errors a. Returns the error. Ia. Passed
b. Do not input errors. b. Sends the message. b. Passed

I Returns a status code:I 0.

9. Test SendNETOS_ I
File.

a. Input various errors a. Returns the error. Ia. Passed
b. Do not input errors. b. Sends the file. b. Passed

Returns a status code
0.

1 10. Test SendNETOS_
String.

3 a. Input various errors a. Returns the error. a. Passed
b. Do not input errors. b. Sends the string. lb. Passed

Returns a status codeI 0.

3 86

I

I

1 TEST PLAN 29 OCT 88

5 for Layer 6

TEST EXPECTED TEST
CONDITIONS ACTION RESULTS

11. Test ReceiveNetos_
Request.

a. Input various errorsla. Returns the error. a. Passed
b. Do not input errors. b. Receives the message. b. Passed

I Returns a status code:0.

II
12. Test Receive NETOS

Status.

a. Input various errorsla. Returns the error. a. Passed
b. Do not input errors. b. Receives the message b. Passed

I Returns a status code:
1 0 .1

£ 13. Test ReceiveNETOS_
File.

a. Input various errorsla. Returns the error. a. Passed
b. Do not input errors. b. Receives the file. b. Passed

Returns a status code

1 0.I I.
14. Test ReceiveNETOS_

String.

a. Input various errorsla. Returns the error, a. Passed
b. Do not input errors. b. Receive the string. b. PassedII Returns a status code1 0.

I

8
1 87

I

U
I
3 APPENDIX B

USER GUIDEU
Hardware Components

The hardware components for which the present NETOS

3 system is configured for consist of the Central System

(System B) and nine Z-248 microcomputer Work Stations

3 (Systems A and C-J) on the LSINET. Also, a protocol

analyzer (Hewlett-Packard 4955A) is provided, at present, in

series between the Central System and System F for use in

3 analyzing the network.

At present, the Work Stations are wired to communicate

3 on Comm Port #2. Any reconfiguration of the wiring to

another Comm Port will require changes to the PTABLE.DAT

file. All links between the Central System and the Work

3 Stations consist of serial RS-232 cables.

i Software Components

The software written for the Work Stations was

3 implemented in JANUS/Ada Version 2.0.2 on Z-248

microcomputers running a MSDOS Version 3.20 Operating

3 System. And, the software written for the Central System

was implemented in Whitesmith C on a LSI-11/23 microcomputer

I running a RT-11 Version 5.1 Operating System.

I

*l8

I

1 Getting Started

I WARNING: MAKE SURE THE FLOPPY DISK IS
NOT IN THE DISK DRIVE WHEN
TURNING THE SYSTEM ON OR OFF.
DAMAGE MAY OCCUR TO THE DATA ON
THE FLOPPY DISK.

I The network must be activated at the Central System

before any communication can take place. The Central System

is powered on and off by the switch on the power strip

5 located on the floor along the wall next to the Central

System (the LSI next to the wall). After powering the

Central System on, the system is booted and NETOS is loaded

5 by placing the NETOS disk (disk labeled: NETOS CENTRAL

SYSTEM, NOVEMBER 1988, BOOTABLE SYSTEM) in disk drive 0.

5 This disk is located in the drawer of the desk of System F.

After a few seconds a menu will be displayed on the monitor.

I The selections are pretty much self-explanatory except for

"B - Change Port Status". This prompt allows the operator

to change the status of a port as either active or not

3 active. Only active ports are polled for receiving packets.

Once the network is in operation, the monitor will

* display which host is being polled; when receiving a packet,

* which host the packet is being received from; and when

transmitting a packet, which host the packet is being sent

3 to. Also, displayed will be error messages if there were

any errors.

I
* 89

I

Interfacing User Application Programs with the Network

The following files must be located in the default

directory for the network to operate.

WARNING: THE EOF MARKER MUST OCCUR ON
THE SAME LINE OF THE LAST DATA
ENTRY OR AN ERROR WILL OCCUR
READING THE DATA.

PTABLE.DAT This file contains a listing of all
host codes and the corresponding
port id and baud rate associated
with the host codes. Used by Layer
3.

HTABLE.DAT This file contains a listing of all
logical host name and the
corresponding physical host code
and process id associated with the
logical host name. Used by Layer
5.

In order to interface with the lower ISO layers, the

user application programs (Layer 7) must 'with' LAYER_6.

The following files are required in order to link the user

application program.

LAYER 1.JRL LAYER 2.JRL LAYER 5.JRL
LAYER 1.SRL LAYER 2.SRL LAYER 5.SRL
LAYER-1.SYM LAYER-2.SYM LAYER_5.SYM

SEND 2.JRL LAYER 3.JRL LAYER 6.JRL
SEND_2.SRL LAYER_3.SRL LAYER_6.SRL
SEND_2.SYM LAYER 3.SYM LAYER_6.SYM

RECV_2.JRL LAYER_4.JRL NETLIB.JRL
RECV_2.SRL LAYER_4.SRL NETLIB.SRL
RECV_2.SYM LAYER_4.SYM NETLIB.SYM

90

The user application programs typically provide a

network service, where the network service consists of two

programs; a server program and a user access program.

Before a network service can be provided, both the

server program and the initiating program must initialize

Layer 6. Then, the initiating program must send a request

for service message to the corresponding server program.

This is required in order to determine if the server program

is online, ready, and capable of handling the request.

3I Therefore, this request message must contain all necessary

information to allow the service program to reach a decision

as to accept the request or reject it.

The server program must be capable of sending a status

I message back to initiator. The status message indicates

whether the request is accepted or rejected; and if

rejected, the reason why. If accepted, the status message

3 may contain further information for the initiator.

Once the appropriate handshaking of requesting a

* service and receiving an accept status message is complete,

the initiator and network server both must be capable of

transmitting and receiving messages back and forth as

* required.

Typically the initiator will be a user access program.

However, there are special cases where the initiator will be

a network server which is requesting service of another

network server. For example, to print a list of files from

91

the Mass Storage System, this server must request service of

the Printer Spooler System (HARTRUM, 1988).

Table IV lists the callable functions provided by Layer

6 to the user application programs. Tables V - VIII lists

the current valid parameters. MSIZE defines the variable

size of the message that can be communicated from point-to-

point through the network. It is presently limited to a

maximum of 510 by Layer 6. PRIORITY is currently limited

between 0 - 9. INFO is defined as a string of five (5).

INFOl is defined as a string of 13. And, INFO2 is defined

as a string of 5. Lastly, Table IX list all the status

codes. Since there are no user application programs at the

present time, these parameters have yet to be defined.

Moreover, any changes to these will require changes in the

Layer 6 software, since Layer 6 checks these input for

validity. Also any changes to the SRCE/DEST parameters will

require changes to the HTABLE.DAT file.

92

3

U Table IV.
Layer 6 Callable Modules

procedure INITIALIZELAYER_6(STATUS : out Integer);

I procedure SENDNETOSREQUEST(MSGTYPE : in String;
SRCE : in String;
DEST : in String;

FILENAME : in String;
PRIORITY : in Character;

DESTDEVICE : in Character;
INFO : in String;

STATUS : out Integer);

procedure SENDNETOSSTATUS(SRCE : in String;
DEST : in String;

STATUSCHARACTER : in Character;
INFOl : in String;
INFO2 : in String;

STATUS : out Integer);

procedure SENDNETOSFILE(SRCE : in String;
DEST : in String;

FILENAME : in String;
MSIZE : in Integer;
STATUS out Integer);

procedure SENDNETOSSTRING(SRCE : in String;
DEST : in String;

TEMPSTRING : in String;
MSIZE : in Integer;
STATUS : out Integer;

SYSTEMMSG : in Boolean);

procedure RECEIVENETOSREQUEST(MSGTYPE : out String;
SRCE : in out String;
DEST : in out String;

FILENAME : out String;
PRIORITY : out Character;

DESTDEVICE : out Character;
INFO : out String;3 STATUS : out Integer);

procedure RECEIVENETOSSTATUS(SRCE : in out String;
DEST : in out String;

STATUSCHARACTER : out Character;
INFOI : out String;
INFO2 : out String;3 STATUS : out Integer);

93

procedure RECEIVENETOSFILE(SRCE : in out String;
DEST : in out String;

FILENAME : in String;
STATUS : out Integer);

procedure RECEIVENETOSSTRING(SRCE : in out String;
DEST : in out String;

TEMPSTRING : out String;
STATUS : out Integer);

Table V.
MSGTYPE Parameters

"SPO" - Spooler Request
"MSS" - MSS Request
"QRY" - DBMS Request

Table VI.
SRCE/DEST Parameters

"SPOOLER " - Spooler Printer System
"MASS-STORE" - MSS Storage System
"DATABASE " - Database System
"REMOTE-A " - Remote System 'A'
"REMOTE-C " - Remote System 'C'
"REMOTE-D " - Remote System 'D'
"REMOTE-E " - Remote System 'E'
"REMOTE-F " - Remote System 'F'
"REMOTE-G " - Remote System 'G'
"REMOTE-H " - Remote System 'H'
"REMOTE-I " - Remote System I
"REMOTE-J " - Remote System 'J'

- Any System

94

i

Table VII.
DESTDEVICE Parameters

'A' Alps PrinterI - Any Printer (don't care)

I

I
Table VIII.3 STATUSCHARACTER Parameters

'A' - TestA status
'B' - TestB status
'C' - TestC status
PDF - Test D status
'E' - TestE status

95

I
I
I

Table IX.
* Status Codes

0 - No errors
101 - Invalid baud rate
102 - Error initializing the port
201 - Timeout sending transmit request 'B'
202 - Timeout waiting transmit acknowledge 'A'
203 - Non-transmit acknowledge received
204 - Timeout waiting ACK or NAK
205 - NAK received
206 - Non ack/nak received
211 - Timeout waiting to receive a transmit request
212 - Non-transmit request received
213 - Timeout waiting to send transmit acknowledge
214 - Timeout waiting to get 1st 4 bytes of a frame
215 - The 1st byte of the frame was not an ASCII.SOH
216 - Timeout getting the rest of the frame
301 - SRC/DST code not found in table
302 - Invalid SRC code received
303 - Invalid DST code received
401 - One end of the link is already in use
402 - All channels are already in use
403 - Invalid channel connection response
404 - Invalid channel request received
405 - Channel not found while trying to close
406 - Channel not found while trying to send
501 - SRCE/DEST names not found
502 - SRC/DST and SPN/DPN codes not found
601 - Not a valid msgtype
602 - Not a valid srce/dest
60i - Filename does not begin with alpha-character
604 - Not a valid priority
605 - Not a valid DEST DEVICE
606 - Not a valid STATUSCHARACTER
607 - Not a valid MSIZE
608 - MSGTYPE not a NETOS status message

96

I'
Bibliography

Booch, Grady, Software Engineering with Ada. Menlo Park,

California: Benjamin/Cummings Publishing Company, Inc.,

1986, pp xiii-8.

Hartrum, Thomas C., "NETOS - Network Operating System at

AFIT," Department of Electrical and Computer

Engineering, School of Engineering, Air Force Institute

of Technology, WPAFB, Dayton, OH, Feb 1988.

Tanenbaum, Andrew S., Computer Networks. Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1981, pp 15-21.I
Zimmerman, Hubert, "OSI Reference Model - The ISO Model of

Architecture of Open Systems Communications," IEEE

Transactions on Communications, Vol. COM-28(4), April

1 1980, pp 425-432.

97

97

VITA

Robert Rodriguez

He entered active duty in the United States

Air Force in September 1977 and attended the Weapons Control

System (F4E) training at Lowry Air Force Base, CO. Upon

completion, he was assigned to Homestead Air Force Base, FL

where he served as a Weapons Control System (F4E) Mechanic.

He received an honorable discharge in December 1980. He

immediately attended the University of Florida. He

graduated in 1983 with a Bachelor of Science Degree in

Electrical Engineering. Upon graduation, he received a

commission in the USAF by attending the Officer Training

School at Lackland Air Force Base, Texas. He was assigned

to Tyndall Air Force Base, FL where he held the position of

Chief, Facilities Section. He entered the School of

Engineering, Air Force Institute of Technology, in June of

1987.

98

SEC'JRITY CLASS F'CA'ON OF Tk-5 PAGE
Form A-pproved

REPORT DOCUMENTATION PAGE 0 Fo 0V.8ed

la REPORT SECjRIY CLASSiFiCATiON lb RESTRiCT(VE MARKINGS

2a. SECURITY CLASSiFiCATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSiFiCATION/ DOWNGRADING SCHEDULE Approved for public release,

1distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
6 (if applicable)

chrool z: -nineerin - AFTT/EX
6C. ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City. State, and ZIP Code)

Air Force institute of Technology ,"

Wright-Patterson AFF, OH 45433 . "
8a NAME OF FUNDING,SPONSORING 8b OFFCE SYMBOL 9 PROCUREMENT iNSTRuMENT.JDENTIfTC .I.N BER

ORGANIZATION (If applicable) X

A I: ENG ____

I 8c. ADDRESS(City, State and ZIPCode) 10 SOURCE OF FUNDING NUMBERS

Air Force Institute of Technology ELEMENT NO RO N ACCESSION NO

Wriaht-Patterson AFB, OH E TNS O
11 TITLE (Include Security Classification)

See Box 19 (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Rot!ert Rodri oue7. -.-. Cart- TSAFT 1
13.TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15PAGE COUNT

IMS Thesis I FROM TO 1Q88 ner n I 106
16. SUPPLEMENTARY NOTATION

17
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP I SUB-GROUP computers, computer programming, microcomputers,I 09 02
(t Communication networks

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

I Title: Implementation of the NETOS Operating System in Ada with
Modifications to Allow Variable Length Messages.

I Thesis Chairman: Bruce L. George, Capt, USAF

This thesis redeveloped the Network Operating System (NETOS)
software, which is patterned after the OSI 7-Layer Model and runs

I on a Local Area Network at the Air Force Institute of Technology,
from the programming language C to the programming language Ada,
with modifications to support variable length messages.

* The approach taken used a software development methodology
which contains the following phases; requirements analysis, design,
implementation, and testing. The requirement analysis phase consisted

I20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIED/UNLIMITED 03 SAME AS RPT. OTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Bruce L. George, Capt, USAF 513-255-3576 AFIT ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Block 19 cont.

of an enumerated listing of the requirement specifications supported
by SADT diagrams. The design phase transformed these diagrams to a
structural chart representation of the design. Implementation of the
software was written in Janus/Ada for the work stations and Whitesmith
C for the central system. Testing was an integral part of the
implementation phase and was accomplished at each level of the
7-Layer model.

I

II

I
I
I

* I

I

I
I

